共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrotropism: The current state of our knowledge 总被引:2,自引:0,他引:2
Hideyuki Takahashi 《Journal of plant research》1997,110(2):163-169
The response of roots to a moisture gradient has been reexamined, and positive hydrotropism has been demonstrated in recent
years. Agravitropic roots of a pea mutant have contributed to the studies on hydrotropism. The kinetics of hydrotropic curvature,
interactions between hydrotropism and gravitropism, moisture gradients required for the induction of hydrotropism, the sensing
site for moisture gradients, characteristics of hydrotropic signal and differential growth, and calcium involvement in signal
transduction have been subjects of these studies. This review summarizes the current state of our knowledge on hydrotropism
in roots. 相似文献
2.
P. E. Pilet 《Planta》1986,169(4):600-602
A large population of primary roots of Zea mays (cv. LG 11) was selected for uniform length at zero time. Their individual growth rates were measured over an 8-h period in the vertical position (in humid air, darkness). Three groups of these roots with significantly different growth rates were then chosen and their cap length was measured. It was found that slowly growing roots had long caps whereas rapidly growing roots had short caps. The production by the cap cells of basipetally transported growth inhibitors was tested (biologically by the curvature of half-decapped roots) and found to be significantly higher for longer root caps than that for shorter ones. 相似文献
3.
Hideyuki Takahashi 《Plant and Soil》1994,165(2):301-308
We have studied hydrotropism and its interaction with gravitropism in agravitropic roots of a pea mutant and normal roots of peas (Pisum sativum L.) and maize (Zea mays L.). The interaction between hydrotropism and gravitropism in normal roots of peas or maize were also examined by nullifying the gravitropic response on a clinostat and by changing the stimulus-angle for gravistimulation. Depending on the intensity of both hydrostimulation and gravistimulation, hydrotropism and gravitropism of seedling roots strongly interact with one another. When the gravitropic response was reduced, either genetically or physiologically, the hydrotropic response of roots became more unequivocal. Also, roots more sensitive to gravity appear to require a greater moisture gradient for the induction of hydrotropism. Positive hydrotropism of roots occurred due to a differential growth in the elongation zone; the elongation was much more inhibited on the moistened side than on the dry side of the roots. It was suggested that the site of sensory perception for hydrotropism resides in the root cap, as does the sensory site for gravitropism. Furthermore, an auxin inhibitor, 2,3,5-triiodobenzoic acid (TIBA), and a calcium chelator, ethyleneglycol-bis-(-aminoethylether)-N,N,N,N- tetraacetic acid (EGTA), inhibited both hydrotropism and gravitropism in roots. These results suggest that the two tropisms share a common mechanism in the signal transduction step. 相似文献
4.
Valerie A. Smith 《Planta》1993,191(2):158-165
The physiological and biochemical consequences of treating Le (tall) and le (dwarf) pea seedlings with varying quantities of the gibberellins [3H]GA20 and GA1 have been investigated. Although the percentage uptake of these compounds from the site of application on the 3 stipules was low and most of the applied GA remained unmetabolised in situ, the quantitative relationship between GA translocation and GA dosage was found to be linear for GA1 but saturating for GA20. The movement of the GAs and their subsequently produced metabolites was mainly acropetal. They accumulated in greatest quantity in the apical extremities of the shoot. Overall, the extent to which GA20 was metabolished in le seedlings was considerably less than in Le pea seedlings. Although all le tissues contained significantly less [3H]GA1 than their Le counterparts, phenotypic effects of the le mutation were apparent only on internode and tendril development. Increased tissue growth, consequent upon GA treatment, was also apparent only in the internodes and tendrils of le plants. For internodes, GA1 content determined the mid-logarithmic-phase growth rate and, consequently, final length. For tendrils, GA20 rather than GA1 may be the primary stimulatory agent.Abbreviations GA
gibberellin
- HPLC
high-performance liquid chromatography
- 1–6
consecutive developmental numbering system for plant tissues/organs as shown in Fig. 1
The author gratefully acknowledges financial support from Imperial Chemical Industries, Plant Protection, Jealott's Hill, Bracknell, Berks., UK and the Science and Engineering Research Council. 相似文献
5.
Peter M. schildwacht 《Planta》1989,177(2):178-184
Leaf-elongation rates of Zea mays L. and Phaseolus vulgaris L. were measured in plants grown for 4 d in nutrient solution bubbled with N2 and in soil-grown waterlogged Phaseolus plants. Leaf water potential in both species was lower 3–4h after replacing aeration by N2-bubbling. In Zea, the water potential after 24 h or more was the same in control plants and plants with N2 treatment. In Phaseolus, the water potential of inundated plants and plants with N2 treatment was always lower than those of control plants. The leaf-elongation rate of both species was always lower in plants treated with N2, especially during light periods. In Zea, the elongation rate was lowest in the first 24 h, whilst in Phaseolus it was lowest on the last (fourth) day of treatment. There was no difference between N2 treatment and inundation experiments. It is concluded that during the first hours of treatment the leaf-elongation rate was reduced as a consequence of the lower water potential. Thereafter, however, elongation rates were lower than could be expected on the basis of the plant's water relations.Abbreviations LER
leaf elongation rate
- PEG-200
polyethylene-glycol 200
- RWC
relative water content 相似文献
6.
Root lectins are believed to participate in the recognition between Rhizobium and its leguminous host plant. Among other factors, testing this hypothesis is difficult because of the very low amounts in which root lectins are produced. A double-antibody-sandwich enzyme-linked immunoassay, was used to determine nanogram quantities of pea lectin in root slime and salt extracts of root cell-wall material when pea seedlings were 4 and 7 d old. In addition, a critical NO
3
-
concentration (20 mM) which inhibited nodulation was found, and the lectin present in root slime and salt extracts of root cell walls of 4- and 7-d-old peas supplied with 20 mM NO
3
-
was comparatively determined. With the enzyme-linked immunoassay, lectin quantities ranging between 20 and 100 nanograms could be determined. The assay is not affected by monomeric mannose and glucose (pealectin haptens). The slime of the 4-d-old roots contained more lectin than the slime of the 7-d-old roots. Salt-extractable, cell-wall-associated lectin accumulated in the older roots. Nitrate affected slime and cell-wall production, and the extractability of cell-wall material in both age groups. The presence of NO
3
-
increased lectin in the slime, most notably in the younger roots; the relative amount of lectin in the slime was almost doubled. The cell-wall-associated, salt-extractable lectin decreased two- to threefold compared with the control group.Abbreviations ELISA
enzyme-linked immunoassay
- PTN
0.01 M phosphate buffer (pH 7.4), containing 0.15 M NaCl, 0.05% Tween-20 and 0.02% NaN3
Dedicated to Professor A. Quispel on the occasion of his retirement 相似文献
7.
Summary Using roots of maize, we tested the hypothesis that the origin and maintenance of the quiescent center (QC) are a consequence of polar auxin supply. Exposing roots to the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), or to low temperature (4 °C, with subsequent return to 24 °C), enhances mitotic frequency within the QC. In both treatments, the QC most typically is activated at its distal face, and the protoderm/dermatogen undergoes several periclinal divisions. As a result, the root body penetrates and ruptures the root cap junction and the characteristic closed apical organization changes to open. A QC persists during these changes in apical organization, but it is diminished in size. The data from the TIBA-treated roots suggest a role for auxin in the origin and maintenance of the QC, and further, that alterations in QC dimensions are a consequence of polar auxin supply. We hypothesize that the root cap, and specifically the root cap initials, are important in regulating polar auxin movements towards the root apex, and hence are important in determining the status of the QC.Abbreviations QC
quiescent center
- TIBA
2,3,5-triiodobenzoic acid
Dedicated to the memory of Professor John G. Torrey 相似文献
8.
9.
Protoplasts were isolated from cortical cells of the elongating zone of maize (Zea mays L. cv. LG 11) roots and submitted to microelectrophoresis. Significant and transient differences in zeta potential between protoplasts from upper and lower root sides were compared with the gravireaction and the differential elongation of these roots. The maximum difference in the zeta potential was obtained between protoplasts from the upper and lower cortical cells after 90 min, exactly the time of gravipresentation for which the maximum rate of gravireaction was observed. In addition, this almost corresponded to the time for which the difference between the elongation rates of upper and lower sides of the extending zone began to increase. Consequently, the changes in the charges of the plasmalemma of the cortical cells from the growing part of roots could be more or less directly related to the root graviresponse. 相似文献
10.
The electric potential on the surface of the Lepidium sativum L. root apex was recorded by means of six non-polarizable electrodes. Nonevoked fluctuations of the potential with amplitudes below 0.1 mV were observed. The fluctuations could be reversibly inhibited either by ether vapor or by anoxia caused by N2. They did not occur in killed roots. Cross-correlation analysis of the fluctuations from six electrodes located one above another along the 3-mm apical region showed a pattern of time delay which indicates that the fluctuations may be the consequence of signals propagated in the root with a velocity of 3–9 mm · s–1 in a basipetal direction from the root cap. We hypothesize that the fluctuations are due to signals of an unknown nature propagated along an intrasymplasmic continuous system, the symreticulum, composed of the cortical ER of individual cells and desmotubules passing through the plasmodesmata.Abbreviations AC
alternating current
- AP
action potential
- ACF
autocorrelation function
- CCF
cross-correlation function
- DC
direct current
- EEP
extracellular electric potential
This research was supported by Bundesminister für Forschung und Technologie, Bonn, and Ministerium für Wissenschaft und Forschung, Düsseldorf, (AGRAVIS). We are grateful to Mr. Dipl.-Ing. P. Blasczyk for constructing the amplifiers and for advice in instrumentation, and to Mr. H. Laubach for constructing the mechanical assembly. 相似文献
11.
In the present study, root hydrotropism in an agravitropic mutant of Pisum sativum L. grown in vermiculite with a steep water potential gradient was examined. When wet and dry vermiculite were placed side by side, water diffused from the wet (-0.04 MPa) to the dry (-1.2 MPa) and a steep water potential gradient became apparent in the dry vermiculite close to the boundary between the two. The extent and location of the gradient remained stable between the fourth and sixth day after filling a box with vermiculite, and the steepest gradient (approx. 0.02 MPa mm-1) was found in the initially dry vermiculite between 60 and 80 mm from the boundary. When seedlings with 25-35 mm long roots were planted in the initially dry vermiculite near where the gradient had been established, each of the main roots elongated toward the wet vermiculite, i.e. toward the high water potential. Control roots elongated without curvature in both the wet and the dry vermiculite, in which no water potential gradient was detectable. These results show that pea roots respond to the water potential gradient around them and elongate towards the higher water potential. Therefore, positive hydrotropism occurs in vermiculite just as it does in air. Hydrotropism in soil may be significant when a steep water potential gradient is apparent, such as when drip irrigation is applied. 相似文献
12.
Severance of the stele of young main roots of pea (Pisum sativum L.) results in formation of a bridge of vascular tissue in the remaining cortex. Cell divisions occur close to the severed vascular tissues on both the proximal and distal sides of the cut within 24 h. Differentiation of new vascular strands subsequently begins in the same locations and progresses from both sides of the wound into the remaining cortex and also back along the original vascular strands. Most of the vascular tissue which forms the bridge through the cortex differentiates in the acropetal direction. Continuous strands composed of single sieve elements bypass the wound somewhat sooner than the first complete xylem strands; the latter in 60–70% of the cases, are present by 3 d. Cambial activity subsequently adds more xylem and phloem. Vascular regeneration is not affected by removal of the epicotyl or the root tip; it is greatly reduced but not prevented by removal of the cotyledons. 相似文献
13.
Yutaka Miyazawa Yoshie Ito Teppei Moriwaki Akie Kobayashi Nobuharu Fujii Hideyuki Takahashi 《Plant science》2009,177(4):297-301
Plants are sessile in nature and must respond to various environmental cues to regulate their growth orientation. Root hydrotropism, a response to moisture gradients, has been considered to play an important role in drought avoidance. Nonetheless, the processes underlying hydrotropism in roots have remained obscure until recently because of the interfering effect of gravitropism. To shed light on root hydrotropism, we isolated and analyzed two Arabidopsis mutants, mizu-kussei (miz) 1 and 2, that have abnormal hydrotropic responses but normal responses to gravity. MIZ1 encodes a protein of unknown function with a conserved domain at its C-terminus. MIZ2 encodes a guanine-nucleotide exchange factor for ADP-ribosylation factor-type G proteins, which has been identified as GNOM. These findings suggest that roots possess molecular mechanisms essential for hydrotropism but independent of gravitropism. One of such mechanisms involves vesicle transport unique to hydrotropism in roots. Here we summarize recent progress on the molecular mechanism of root hydrotropism and the roles of MIZ1 and MIZ2. 相似文献
14.
Paul-Emile Pilet 《Planta》1979,145(4):403-404
Apical root segments of Zea mays L. cv. Orla 264 undergo some geotropic curvature in complete darkness but the curvature increases considerably if prior to geostimulation the segments are given a light pretreatment. If the light treatment is follwed by a dark treatment before the root is geostimulated the light-induced response is not changed by dark periods up to 2 h but declines with longer ones, and disappears completely after 5 h of darkness. 相似文献
15.
C. L. Díaz P. C. van Spronsen R. Bakhuizen G. J. J. Logman E. J. J. Lugtenberg J. W. Kijne 《Planta》1986,168(3):350-359
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC
fluorescein isothiocyanate
- TRIC
tetramethylrhodamine isothiocyanate 相似文献
16.
The root hairs of plants are tubular projections of root epidermal cells and are suitable for investigating the control of cellular morphogenesis. In wild-typeArabidopsis thaliana (L.) Heynh, growing root hairs were found to exhibit cellular expansion limited to the apical end of the cell, a polarized distribution of organelles in the cytoplasm, and vesicles of several types located near the growing tip. Therhd3 mutant produces short and wavy root hairs with an average volume less than one-third of the wild-type hairs, indicating abnormal cell expansion. The mutant hairs display a striking reduction in vacuole size and a corresponding increase in the relative proportion of cytoplasm throughout hair development. Bead-labeling experiments and ultrastructural analyses indicate that the wavy-hair phenotype of the mutant is caused by asymmetric tip growth, possibly due to abnormally distributed vesicles in cortical areas flanking the hair tips. It is suggested that a major effect of therhd3 mutation is to inhibit vacuole enlargement which normally accompanies root hair cell expansion. 相似文献
17.
Summary Plasmodesmata frequency and distribution in root cap cells ofArabidopsis thaliana root tips were characterized during four weeks after germination to understand the symplasmic control of apoptosis. Apoptotic cells in some of the root apical-meristem cells and in root cap cells were identified by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling reaction and characterized by electron microscopy. Starting at the second week after germination, cells in the outermost layers of the root cap showed typical apoptotic features, including nuclear DNA fragmentation, chromatin condensation, cytoplasmic vacuolation, and organelle destruction. Intercellular connections, indicated by the frequency and number of plasmodesmata per cell length, were significantly reduced in the walls of outer root cap cells. This shows that cells become symplasmically isolated during the apoptosis process. In apoptotic root cap cells, the majority of nonfunctional plasmodesmata were observed to be associated with degenerated endoplasmic reticulum; this state was prior to the detection of any nuclear DNA fragmentation. Other nonfunctional plasmodesmata were sealed by heterogeneous cell wall materials. However, in immature epidermal and cortical cells in 4-week-old arrested roots the endoplasmic reticulum associated with plasmodesmata became disconnected as a result of protoplast condensation and shrinkage. No degenerated endoplasmic reticulum was observed in these cells. These observations suggest that the apoptotic processes in the root body and the root cap are different. 相似文献
18.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH
glyceraldehyde 3-phosphate dehydrogenase
- PFK
phosphofructokinase
- PFP
pyrophosphate: fructose 6-phosphate 1-phosphotransferase
Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council 相似文献
19.
The expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots.Abbreviation cDNA
copy DNA
- poly(A)+RNA
polyadenylated RNA 相似文献
20.
Nicole Benhamou Pierre J. Lafontaine Dominique Mazau Marie-Thérèse Esquerré-Tugayé 《Planta》1991,184(4):457-467
An antiserum raised against deglycosylated hydroxyproline-rich glycoproteins (HPGPs) from melon (Cucumis melo L.) was used to study the relationship between Rhizobium infection and induction of HRGPs in bean (Phaseolus vulgaris L.) root nodule cells infected with either the wild-type or a C4-dicarboxylic acid mutant strain of Rhizobium leguminosarum bv. phaseoli. In effective nodules, where fixation of atmospheric dinitrogen is taking place, HRGPs were found to accumulate mainly in the walls of infected cells and in peribacteroid membranes surrounding groups of bacteroids. Internal ramifications of the peribacteroid membrane were also enriched in HRGPs whereas the peribacteroid space as well as the bacteroids themselves were free of these glycoproteins. In mutant-induced root nodules, HRGPs were specifically associated with the electron-dense, laminated structures formed in plastids as a reaction to infection by this mutant. The presence of HRGPs was also detected in the host cytoplasm. The aberrant distribution of HRGPs in infected cells of mutant-induced nodules likely reflects one aspect of the altered host metabolism in relation to peribacteroid-membrane breakdown. The possibility that the antiserum used for HRGP localization may have cross-reacted with ENOD 2 gene products is discussed in relation to amino-acid sequences and sites of accumulation. 相似文献