首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
Recent evidence suggests that enhanced aldehyde dehydrogenase (ALDH) activity is a hallmark of cancer stem cells (CSC) measurable by the aldefluor assay. ALDH1A1, one of 19 ALDH isoforms expressed in humans, was generally believed to be responsible for the ALDH activity of CSCs. More recently, experiments with murine hematopoietic stem cells, murine progenitor pancreatic cells, and human breast CSCs indicate that other ALDH isoforms, particularly ALDH1A3, significantly contribute to aldefluor positivity, which may be tissue and cancer specific. Therefore, potential prognostic application involving the use of CSC prevalence in tumor tissue to predict patient outcome requires the identification and quantification of specific ALDH isoforms. Herein we review the suggested roles of ALDH in CSC biology and the immunohistological studies testing the potential application of ALDH isoforms as novel cancer prognostic indicators.  相似文献   

2.
Recent efforts in our study of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) have led to the identification of CD133 as a prominent HCC CSC marker. Findings were based on experiments done on cell lines and xenograft tumors where expression of CD133 was detected at levels as high as 65%. Based on the CSC theory, CSCs are believed to represent only a minority number of the tumor mass. This is indicative that our previously characterized CD133(+) HCC CSC population is still heterogeneous, consisting of perhaps subsets of cells with differing tumorigenic potential. We hypothesized that it is possible to further enrich the CSC population by means of additional differentially expressed markers. Using a two-dimensional PAGE approach, we compared protein profiles between CD133(+) and CD133(-) subpopulations isolated from Huh7 and PLC8024 and identified aldehyde dehydrogenase 1A1 as one of the proteins that are preferentially expressed in the CD133(+) subfraction. Analysis of the expression of several different ALDH isoforms and ALDH enzymatic activity in liver cell lines found ALDH to be positively correlated with CD133 expression. Dual-color flow cytometry analysis found the majority of ALDH(+) to be CD133(+), yet not all CD133(+) HCC cells were ALDH(+). Subsequent studies on purified subpopulations found CD133(+)ALDH(+) cells to be significantly more tumorigenic than their CD133(-)ALDH(+) or CD133(-)ALDH(-) counterparts, both in vitro and in vivo. These data, combined with those from our previous work, reveal the existence of a hierarchical organization in HCC bearing tumorigenic potential in the order of CD133(+)ALDH(+) > CD133(+)ALDH(-) > CD133(-)ALDH(-). ALDH, expressed along CD133, can more specifically characterize the tumorigenic liver CSC population.  相似文献   

3.
The cancer stem cell (CSC) theory has been proposed to explain the tumor heterogeneity and carcinogenesis process. Recent studies indicate that aldehyde dehydrogenase (ALDH) activity represents a promising CSC marker. Here, we aimed to determine whether human adenoid cystic carcinoma (AdCC) also follows CSC model by exploring the CSC properties of AdCC cells expressing high level of ALDH activity. Utilizing in-vivo series transplantation assays, we found ALDHhigh AdCC cells were capable of self-renewal and of generating tumors that recapitulate the heterogeneity of the parental tumor. Utilizing in-vitro assay, we found only ALDHhigh AdCC cells have tumorsphere-forming ability in anchorage-independent cultures. Finally, we showed ALDHhigh AdCC cells possess highly invasive capability and are responsible for mediating metastasis. These findings suggest the existence of a developmental hierarchy within human AdCC and further elucidation of the unique survival mechanism of AdCC derived CSC population may provide novel therapeutic strategies to treat AdCC.  相似文献   

4.
5.
To investigate the tumor fraction with cancer stem/tumor initiating cell (CSC/TIC) characteristics, we tested the human cervical carcinoma cell lines A431, Caski and SiHa, by growth as non-adherent spheres in specific media and aldehyde dehydrogenase (ALDH) enzymatic activity. A good correlation between the two parameters was observed and the highest levels were observed in A431 cell line that was selected for characterization of the CSC/TIC fraction. A431 parental cells already displayed characteristics common to CSC/TIC, such as sphere forming efficiency, adherent holoclone formation and high ALDH activity. Non-adherent spheres maintained or increased these properties, and, in particular, ALDH-positive fraction increased from 46 to 65% and a transient induction of stem cell markers such as Nanog, Nestin and Oct4 was observed. Furthermore, a significant increase of paraclone forming cells was observed, suggesting that differentiation took place inside sphere cell populations. As compared to parental cells, spheres were characterized by: (1) a ten-fold higher verapamil-sensitive side population fraction; (2) the appearance of a podoplanin-positive subpopulation characterized by a small cell size; (3) the ability to propagate tumors in nude mice at a lower cell dose. The global gene expression analysis demonstrated a strong and reversible modulation of 'sphere' phenotype in comparison to parental and sphere cells re-induced to adherent conditions. All together our results indicated that the growth of A431 cells as a non-adherent sphere was not sufficient by itself to define a stem-like population, but it was essential for the emergence of a small population of tumor cells with CSC properties.  相似文献   

6.
目的:探索醛脱氢酶1A1(aldehyde dehydrogenase 1A1,ALDH1A1)在肺腺癌细胞(lung adenocarcinoma cell,LAC)化疗耐药中的作用及机制,为肺癌临床治疗和新型药物的研发提供实验依据。方法:采用慢病毒载体构建ALDH1A1高表达肺腺癌细胞模型,并通过流式细胞术和western blot技术对该细胞模型进行验证。通过CCK8法检测ALDH1A1高表达肺腺癌细胞对肺癌治疗药物顺铂(cisplatin,DDP)、紫杉醇(paclitaxcel)、厄洛替尼(erlotinib)和吉非替尼(gefitinib)的耐药性。通过检测肿瘤干细胞(cancer stem cell,CSC)分子标志物、上皮-间质转化(Epithelial-Mesenchymal Transition,EMT)分子标志物及细胞迁移能力探讨ALDH1A1高表达对肺腺癌细胞的干性和EMT特征的影响。双硫仑(disulfiram,DSF)是ALDH的抑制剂,我们通过CCK8法和transwell细胞迁移实验探究DSF对肺腺癌细胞体外生长和迁移能力的影响,体内实验探究DSF和厄洛替尼联合用药对HCC827-ALDH1A1细胞皮下异种移植瘤生长的影响。结果:ALDH1A1高表达诱导肺腺癌细胞对厄洛替尼、吉非替尼、紫杉醇和顺铂产生不同程度的耐药,干细胞标志物CD44、CD133蛋白表达上调,EMT间充质标志物vimentin蛋白表达上调,transwell实验结果显示ALDH1A1高表达肺腺癌细胞的迁移能力增强,使用ALDH靶向抑制剂DSF能选择性抑制ALDH1A1高表达肺腺癌细胞所增高的迁移能力并克服HCC827-ALDH1A1细胞皮下异种移植瘤的生长,延缓体内耐药。结论:ALDH1A1能诱导肺腺癌细胞对多种抗肺癌药物产生耐药并发生干细胞样转化,靶向抑制ALDH酶活性可克服由ALDH1A1高表达所产生的耐药,为肺癌的临床治疗提供新的思路。  相似文献   

7.
Cancer stem cells (CSC) or cancer stem cell-like cells (CSC-LCs) have been identified in many malignant tumors. CSCs are proposed to be related with drug resistance, tumor recurrence, and metastasis and are considered as a new target for cancer treatment; however, there are only a few reports on CSCs or CSC-LCs in renal cell carcinoma (RCC). Different approaches have been reported for CSC identification, but there are no universal markers for CSC. We used two different approaches, the traditional side population (SP) approach, and the enzymatic (aldehyde dehydrogenase 1 (ALDH1)) approach to identify CSC-LC population in two RCC cell lines, ACHN and KRC/Y. We found that ACHN and KRC/Y contain 1.4% and 1.7% SP cells, respectively. ACHN SP cells showed a higher sphere forming ability, drug resistance, and a slightly higher tumorigenic ability in NOD/SCID mice than Non-SP (NSP) cells, suggesting that cells with CSC-LC properties are included in ACHN SP cells. KRC/Y SP and NSP cells showed no difference in such properties. ALDH1 activity analysis revealed that ACHN SP cells expressed a higher level of activity than NSP cells (SP vs. NSP: 32.7% vs 14.6%). Analysis of ALDH1-positive ACHN cells revealed that they have a higher sphere forming ability, self-renewal ability, tumorigenicity and express higher mRNA levels of CSC-LC property-related genes (e.g., ABC transporter genes, self-replication genes, anti-apoptosis genes, and so forth) than ALDH1-negative cells. Drug treatment or exposure to hypoxic condition induced a 2- to 3-fold increase in number of ALDH1-positive cells. In conclusion, the results suggest that the ALDH1-positive cell population rather than SP cells show CSC-LC properties in a RCC cell line, ACHN.  相似文献   

8.
The replication of simian virus 40 has been studied by using cell-free extracts derived from human 293 cells. Fractionation of this extract has led to the identification of three fractions that are required for efficient DNA synthesis. Initial fractionation of the crude extract by phosphocellulose chromatography has produced two fractions, I and II, neither of which is able to support replication separately, but when they are combined, efficient synthesis is restored. Both fractions are required, with SV40 T antigen, for the formation of a presynthesis complex at the SV40 origin. The major replication enzymes, DNA polymerase, DNA primase and the topoisomerases I and II all reside in fraction II. Fraction I has been subdivided into two subfractions (A and B) by DEAE-cellulose chromatography. Fraction A is essential for replication and is required for presynthesis complex formation. Fraction B stimulates DNA replication and is only required at the elongation stage. This multicomponent system has provided the foundation for identification of individual components that are required for DNA replication in vitro.  相似文献   

9.
10.
Human pancreatic ductal adenocarcinoma (PDAC) is a cancer with a dismal prognosis. The efficacy of PDAC anticancer therapies is often short-lived; however, there is little information on how this disease entity so frequently gains resistance to treatment. We adopted the concept of cancer stem cells (CSCs) to explain the mechanism of resistance and evaluated the efficacy of a candidate anticancer drug to target these therapy-resistant CSCs. We identified a subpopulation of cells in PDAC with CSC features that were enriched for aldehyde dehydrogenase (ALDH), a marker expressed in certain stem/progenitor cells. These cells were also highly resistant to, and were further enriched by, treatment with gemcitabine. Similarly, surgical specimens from PDAC patients showed that those who had undergone preoperative chemo-radiation therapy more frequently displayed cancers with ALDH strongly positive subpopulations compared with untreated patients. Importantly, these ALDH-high cancer cells were sensitive to disulfiram, an ALDH inhibitor, when tested in vitro. Furthermore, in vivo xenograft studies showed that the effect of disulfiram was additive to that of low-dose gemcitabine when applied in combination. In conclusion, human PDAC-derived cells that express high levels of ALDH show CSC features and have a key role in the development of resistance to anticancer therapies. Disulfiram can be used to suppress this therapy-resistant subpopulation.  相似文献   

11.
Tumors contain a small population of cancer stem cells (CSC) proposed to be responsible for tumor maintenance and relapse. Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate CSCs in different cancer types. This study used the Aldefluor® assay and fluorescence-activated cell sorting (FACS) analysis to isolate ALDH1high cells from five human sarcoma cell lines and one primary chordoma cell line. ALDH1high cells range from 0.3% (MUG-Chor1) to 4.1% (SW-1353) of gated cells. Immunohistochemical staining, analysis of the clone formation efficiency, and xCELLigence microelectronic sensor technology revealed that ALDH1high cells from all sarcoma cell lines have an increased proliferation rate compared to ALDH1low cells. By investigating of important regulators of stem cell biology, real-time RT-PCR data showed an increased expression of c-Myc, β-catenin, and SOX-2 in the ALDH1high population and a significant higher level of ABCG2. Statistical analysis of data demonstrated that ALDH1high cells of SW-982 and SW-1353 showed higher resistance to commonly used chemotherapeutic agents like doxorubicin, epirubicin, and cisplatin than ALDH1low cells. This study demonstrates that in different sarcoma cell lines, high ALDH1 activity can be used to identify a subpopulation of cells characterized by a significantly higher proliferation rate, increased colony forming, increased expression of ABC transporter genes and stemness markers compared to control cells. In addition, enhanced drug resistance was demonstrated.  相似文献   

12.
《Cellular signalling》2014,26(12):2773-2781
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca2 + and Mg2 + permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3  ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.  相似文献   

13.
A clonal line of highly oncogenic spontaneously transformed mouse cells (104C) was transformed in tissue culture by simian virus 40 (SV40) and subsequently recloned (106CSC). This 106CSC cell line expressed T antigen and transplantation antigen but was about 100 times less tumorigenic than the 104C parent. When 10(5) 106CSC cells were injected into immunocompetent syngeneic mice, tumors were produced. From such tumors, cell lines were established in culture, all of which were consistently negative for T antigen. We found previously by solution DNA hybridization methods that the tumor cells were depleted in the early region of SV40 DNA which codes for the T antigen. We postulated that this loss occurs through a DNA rearrangement of unknown mechanism in one or a few 106CSC cells and that the tumors are then produced from such a cell or cells, whereas all the T-antigen-positive 106CSC cells are rejected by immunologic means. In this investigation we showed by the DNA transfer method using appropriately selected SV40 DNA probes that indeed the tumor cell clone (130CSCT) we selected to investigate came from one 106CSC cell in which the T-antigen-coding SV40 DNA sequences (but not all the early SV40 DNA sequences) were lost by an excision and recombination mechanism. We also showed that the 130CSCT cells, which are highly tumorigenic, could again be transformed by SV40 and that the resulting T-antigen-positive cloned derivative cells became much less tumorigenic (approximately 10(5)-fold), apparently again because of immunologic recognition and rejection. Indeed, when 10(7) T-antigen-positive cloned cells were injected, all the T-antigen-positive cells were rejected and the tumor was produced again from one or more T-antigen-negative cells. Thus, a one-step in vivo transplantation experiment allowed a selection (for tumorigenicity and against the SV40 T antigen) of a mutant mammalian cell with a DNA deletion at a definable site.  相似文献   

14.
本实验观察了从新疆产穴居狼蛛(Lycosa singoriensis)的冻干毒腺中提取的粗毒及其经Sephadex G-25柱层析分离所得到的各组分对培养的人肺腺癌细胞的杀伤作用:①与对政党人胚的肺细胞、正常人淋巴细胞和红细胞相比,穴居狼蛛毒对培养的SPC-A1有明显的高杀伤作用。例如用于杀伤50%的SPC-A1细胞所需的粗毒浓度为25 μg/ml,而用于杀伤相同量正常人胚肺细胞和淋巴细胞所需的粗毒浓度分别为600-500 μg/ml,即使将粗毒浓度提高到2000 μg/ml,也只能杀伤40%左右的正常人的红细胞。②在粗毒的8个分离组分中,第Ⅲ、Ⅵ和Ⅷ组分表现出杀伤SPC-A1细胞的活性,尤以后两者为明显。③粗毒经100 ℃加热30分钟后,杀伤SPC-A1细胞的活力稍有下降,但组分Ⅳ和Ⅷ经同样的加温处理后,该活性不变,唯组分Ⅲ在加温后该活性完全丧失。  相似文献   

15.
16.
Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) in certain normal and tumor cells is associated with protection against the growth inhibitory effect of reactive aldehydes generated during membrane lipid peroxidation. We found that human lung tumor (A549) cells, which express high levels of ALDH3A1 protein, were significantly less susceptible to the antiproliferative effects of 4-hydroxynonenal compared to human hepatoma HepG2 or SK-HEP-1 cells that lack ALDH3A1 expression. However, A549 cells became susceptible to lipid peroxidation products when they were treated with arachidonic acid. The growth suppression of A549 cells induced by arachidonic acid was associated with increased levels of lipid peroxidation and with reduced ALDH3A1 enzymatic activity, protein, and mRNA levels. Furthermore, arachidonic acid treatment of the A549 cells resulted in an increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma), whereas NF-kappaB binding activity was inhibited. Blocking PPARgamma using a selective antagonist, GW9662, prevented the arachidonic acid-mediated reduction of ALDH3A1 expression as well as the growth inhibition of A549 cells, suggesting the central role of PPARgamma in these phenomena. The increase in PPARgamma and the reduction in ALDH3A1 were also prevented by exposing cells to vitamin E concomitant with arachidonic acid treatment. In conclusion, our data show that the arachidonic acid-induced suppression of A549 cell growth is associated with increased lipid peroxidation and decreased ALDH3A1 expression, which may be due to activation of PPARgamma.  相似文献   

17.
C Monder  A Marandici 《Steroids》1991,56(1):12-16
Corticosteroid side-chain (CSC) isomerase catalyzes ketol-aldol interconversion of the corticosteroid side chain. The enzyme was present in the blood of mouse, rat, guinea pig, chicken, pig, horse, sheep, cow, and human. The patterns of substrate specificity, measuring 3H-1H exchange of 21-tritiated forms of 11-deoxycorticosterone, corticosterone, and cortisol, were species specific. Based on enzyme activity and immunostaining of mouse blood fractions, red blood cells had the most isomerase activity, plasma had less, and white blood cells had low but highly variable levels of enzyme. Purified mouse liver CSC isomerase was found to be adsorbed by red blood cells. The results suggest that circulating CSC isomerase is derived in part from tissue sources and is in part an intrinsic blood enzyme.  相似文献   

18.
Cancer stem cells (CSCs) are recognized as contributors to cancer progression and therapeutic resistance in liquid and solid malignancies. We analyzed a panel of human colon cancer cell lines for CSC populations by side population and aldehyde dehydrogenase activity. IGF-1 enriches these putative colon CSC populations in a β-catenin-dependent manner. Chemical inhibition of Akt depletes SP cells, and conversely, the overexpression of a constitutively active mutant version of Akt is sufficient to enrich CSC populations. CP-751,871, a fully human antibody with specificity to the IGF-1 receptor, is currently being tested in clinical trials for a variety of solid tumors. CP-751,871 reduces CSC populations in colon cancer cell lines in vitro and reduces tumor growth in vivo. We have identified a novel role for IGF-1 in the enrichment of chemo-resistant CSC populations. Our results suggest that CP-751,871 has preferential activity against putative CSC populations and, therefore, may complement current standard chemotherapeutic regimens that target cycling cells.  相似文献   

19.
Exposure of mammalian cells to DNA damage-inducing agents (DDIA) inhibits ongoing DNA replication. The molecular mechanism of this inhibition remains to be elucidated. We employed a simian virus 40 (SV40) based in vitro DNA replication assay to study biochemical aspects of this inhibition. We report here that the reduced DNA replication activity in extracts of DDIA-treated cells is partly caused by a reduction in the amount of replication protein A (RPA). We also report that the dominant inhibitory effect is caused by the DNA-dependent protein kinase (DNA-PK) which inactivates SV40 T antigen (TAg) by phosphorylation. The results demonstrate that RPA and DNA-PK are involved in the regulation of viral DNA replication after DNA damage and suggest that analogous processes regulate cellular DNA replication with the DNA-PK targeting the functional homologues of TAg.  相似文献   

20.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号