首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When rat liver lysosomes are suspended in a medium containing acridine orange at neutral pH, accumulation of the dye may be observed within the vesicles. The uptake appears driven by a pH gradient between the external medium and the interior of the lysosomes since it is inhibited by NH4+, nigericin and other electroneutral proton-cation exchangers. FCCP is ineffective in inhibiting the uptake. In the presence of Mg++ and anions such as Cl?, ATP promoted a further and more extensive but slower oligomycin and ouabain-insensitive dye uptake, which was also inhibited by FCCP. Very similar results were obtained with neutral red and atebrin. When the rate of the ATP-induced acridine uptake in preparations of different purification grade was compared, it was observed that the uptake rate increased in parallel with lysosomal enzymatic activity. These results suggest that an electrogenic ATP-driven-Mg++ dependent “proton pump” is operating in the lysosomal membrane, as previously proposed.  相似文献   

2.
Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.  相似文献   

3.
Nigericin is a monocarboxylic polyether molecule described as a mobile K+ ionophore unable to transport Li+ and Cs+ across natural or artificial membranes. This paper shows that the ion carrier molecule forms complexes of equivalent energy demands with Li+, Cs+, Na+, Rb+, and K+. This is in accordance with the similar values of the complex stability constants obtained from nigericin with the five alkali metal cations assayed. On the other hand, nigericinalkali metal cation binding isotherms show faster rates for Li+ and Cs+ than for Na+, K+, and Rb+, in conditions where the carboxylic proton does not dissociate. Furthermore, proton NMR spectra of nigericin-Li+ and nigericin-Cs+ complexes show wide broadenings, suggesting strong cation interaction with the ionophore; in contrast, the complexes with Na+, K+, and Rb+ show only clear-cut chemical shifts. These latter results support the view that nigericin forms highly stable complexes with Li+ and Cs+ and contribute to the explanation for the inability of this ionophore to transport the former cations in conditions where it catalyzes a fast transport of K+>Rb+>Na+.Part of the results of this paper were presented at the 14th International Congress of Biochemistry in Prague, Czechoslovakia.  相似文献   

4.
Igor Kucera 《BBA》2005,1709(2):113-118
This study deals with the effects of the agents that dissipate the individual components of the proton motive force (short-chain fatty acids, nigericin, and valinomycin) upon the methyl viologen-coupled nitrate reductase activity in intact cells. Substitution of butyrate or acetate for chloride in Tris-buffered assay media resulted in a marked inhibition at pH 7. In a Tris-chloride buffer of neutral pH, the reaction was almost fully inhibitable by nigericin. Alkalinisation increased the IC50 value for nigericin and decreased the maximal inhibition attained. Both types of inhibitions could be reversed by the permeabilisation of cells or by the addition of nitrite, and that caused by nigericin disappeared at high extracellular concentrations of potassium. These data indicate that nitrate transport step relies heavily on the pH gradient at neutral pH. Since the affinity of cells for nitrate was strongly diminished by imposing an inside-positive potassium (or lithium) diffusion potential at alkaline external pH, a potential dependent step may be of significance in the transporter cycle under these conditions. Experiments with sodium-depleted media provided no hints for Na+ as a possible H+ substitute.  相似文献   

5.
AQP9 is an aquaglyceroporin with a very broad substrate spectrum. In addition to its orthodox nutrient substrates, AQP9 also transports multiple neutral and ionic arsenic species including arsenic trioxide, monomethylarsenous acid (MAsIII) and dimethylarsenic acid (DMAV). Here we discovered a new group of AQP9 substrates which includes two clinical relevant selenium species. We showed that AQP9 efficiently transports monomethylselenic acid (MSeA) with a preference for acidic pH, which has been demonstrated in Xenopus laevis oocyte following the overexpression of human AQP9. Specific inhibitors that dissipate transmembrane proton potential or change the transmembrane pH gradient, such as FCCP, valinomycin and nigericin did not significantly inhibit MSeA uptake, suggesting MSeA transport is not proton coupled. AQP9 was also found to transport ionic selenite and lactate, with much less efficiency compared with MSeA uptake. Selenite and lactate uptake via AQP9 is pH dependent and inhibited by FCCP and nigericin, but not valinomycin. The selenite and lactate uptake via AQP9 can be inhibited by different lactate analogs, indicating that their translocation share similar mechanisms. AQP9 transport of MSeA, selenite and lactate is all inhibited by a previously identified AQP9 inhibitor, phloretin, and the AQP9 substrate arsenite (AsIII). These newly identified AQP9 selenium substrates imply that AQP9 play a significant role in MSeA uptake and possibly selenite uptake involved in cancer therapy under specific microenvironments.  相似文献   

6.
Synaptosomes swell rapidly in isosmotic solutions of glycerol or urea, but the swelling in solutions of larger non-electrolytes, such as erythritol, glucose or sucrose is slower. The permeability of synaptosomes to non-electrolytes is temperature dependent, and the low activation energies for the permeation of urea (13 kcal/mol) and erythritol (9.5 kcal/mol) indicate that the penetration of non-electrolytes into the synaptosomes does not imply complete dehydration of the molecules. The relative permeability of synaptosomes to cations, as measured by the rate of swelling in isosmotic solutions of acetate salts is in the order: NH+4 > Na+ > Li+ > K+ > Ca2+. The ionophores, X-537A and nigericin, or valinomycin + FCCP, which promote exchange of cations for H+, cause swelling of synaptosomes in solutions of potassium salts of acetate or propionate, but not in KCI, whereas H+ release is higher in KCI medium. This suggests that the organic unions cross the membrane after combining with H+ to form the respective weak acids. The relative permeability to anions is in the order: acetate ? propionate > Cl? > SO2-4? maleate ? succinate. The energies of activation for the permeability of synaptosomes to potassium acetate in the presence of X-537A or gramicidin D are 13 kcal/mol and 7.5 kcal/mol, respectively, which reflects different mechanisms of action for the two ionophores in the membranes.  相似文献   

7.
Phosphate Ion Transport in Rabbit Brain Synaptosomes   总被引:1,自引:1,他引:0  
Abstract: Synaptosomes (vesicles of nerve endings) isolated from rabbit brain were studied as a model system for the uptake of inorganic phosphate. The phosphate uptake showed a sodium-dependent, saturable component with a K t of 0.29 m m , The sodium-dependent component was larger at pH 6 than at pH 7.4 or 8. Application of potassium salts, ouabain, monensin, nigericin or FCCP decreased the uptake. The results indicate that the sodium-sensitive phosphate influx is dependent on the Na+ gradient and on the membrane potential, which might act, preferentially, on the transport of the monovalent phosphate ion.  相似文献   

8.
1. Addition of succinate to valinomycin-treated mitochondria incubated in KCl causes a large electrolyte penetration. The process depends on a steady supply of energy and involves a continuous net extrusion of protons. Rates of respiration and of electrolyte penetration proceed in a parallel manner.2. A passive penetration of K+ salt of permeant anions occurs in respiratory-inhibited mitochondria after addition of valinomycin. Addition of succinate at the end of the passive swelling starts an active extrusion of anions and cations with restoration of the initial volume. The shrinkage is accompanied by a slow reuptake of protons. The initiation of the active shrinkage correlates with the degree of stretching of the inner membrane. The extrusion of electrolytes is inhibited by nigericin, while it is only slightly sensitive to variations of the valinomycin concentration larger than two orders of magnitude.3. Passive swelling and active shrinkage occurs also when K+ is replaced by a large variety of organic cations. The rate of organic cation penetration is enhanced by tetraphenylboron, while the rate of electrolyte extrusion is insensitive to variation of the tetraphenylboron concentration.4. Active shrinkage, either with K+ or organic cation salts, is inhibited by weak acids. The phosphate inhibition is removed by SH inhibitors. The active shrinkage is also inhibited by mersalyl to an extent of about 60%.5. Three models of active shrinkage are discussed: (a) mechanoprotein, (b) electrogenic proton pump, and (c) proton-driven cation anion pump.  相似文献   

9.
《Molecular membrane biology》2013,30(1-2):155-168
Plasma membrane vesicles isolated from Ehrlich ascites tumor cells have been used to investigate the role of the transmembrane potential in the energetics of Systems A and L. As expected, Na+-dependent System A was responsive to changes in membrane potential. System L activity, as measured by transport of 2-aminonorbornane-2-carboxylic acid (BCH), was shown to be Na+-independent and was not altered by changes in the membrane potential. The combination of valinomycin and nigericin decreased accumulation of MeAIB but not that of BCH. The presence of nigericin alone caused a significant decrease in uptake by System A and a decrease in uptake by System L to a lesser degree. The inhibitory action of nigericin might reflect its ability to dissipate the Na+ gradient rather than an effect on K+ or H+ flows. The results indicate that modes of energization not produced through the transmembrane potential must account for any uphill operation of System L.  相似文献   

10.
Butacaine and certain other local anesthetics markedly stimulate the rate, extent, and efficiency of respiration-dependent contraction of heart mitochondria in nitrate salts at alkaline pH. The local anesthetics also induce respiratory control associated with contraction (i.e., the elevated rate of respiration during contraction declines to a State 4-like controlled rate when contraction is complete) so that the reaction at alkaline pH closely resembles the rapid and highly efficient process seen at neutral pH. Respiration-dependent contraction appears to be an osmotic response to cation extrusion on an endogenous cation/H+ exchanger (G. P. Brierley, M. Jurkowitz, E. Chavez, and D. W. Jung, 1977, J. Biol. Chem.252, 7932–7939). At alkaline pH, net ion extrusion is slow and inefficient due to the elevated permeability of the membrane to monovalent cations through a putative uniport pathway. Butacaine and other local anesthetics seem to decrease influx-efflux cycling of cations at alkaline pH by restricting cation influx through this uniport. Passive swelling at pH 8.3 in nitrate salts indicates that the uniport reaction is sensitive to Ca2+ and has a cation-selectivity of Na+ > K+ > Li+. Butacaine does not inhibit passive swelling under these conditions but produces effects identical to those of classical uncouplers and consistent with increased H+ conductance and accelerated influx of cations by cation/H+ exchange in nonrespiring mitochondria. However, since contraction in respiring mitochondria is inhibited by uncouplers but stimulated by butacaine, it is apparent that butacaine is not an effective proton conductor in energized mitochondria.  相似文献   

11.
Changes in the surface potential, the electrical potential difference between the membrane surface and the bulk aqueous phase were measured with the carotenoid spectral shift which indicates the change of electrical field in the membrane. Chromatophores were prepared from a non-sulfur purple bacterium, Rhodopseudomonas sphaeroides, in a low-salt buffer. Surface potential was changed by addition of salt or by pH jump as predicted by the Gouy-Chapman diffuse double layer theory.When a salt was added at neutral pH, the shift of carotenoid spectrum to shorter wavelength, corresponding to an increase in electrical potential at the outside surface, was observed. The salts of divalent cations (MgSO4, MgCl2, CaCl2) were effective at concentrations lower than those of monovalent cation salts (NaCl, KCl, Na2SO4) by a factor of about 50. Among the salts of monoor divalent cation used, little ionic species-dependent difference was observed in the low-concentration range except that due to the valence of cations. The pH dependence of the salt-induced carotenoid change was explained in terms of the change in surface charge density, which was about 0 at pH 5–5.5 and had negative values at higher pH values. The dependence of the pH jump-induced absorbance change on the salt concentration was also consistent with the change in the charge density. The surface potential change by the salt addition, which was calibrated by H+ diffusion potential, was about 90 mV at the maximum. From the difference between the effective concentrations with salts of mono- and divalent cations at pH 7.8, the surface charge density of (?1.9 ± 0.5) · 10?3 elementary charge per Å2, and the surface potential of about ?100 mV in the presence of about 0.1 mM divalent cation or 5 mM monovalent cation were calculated.  相似文献   

12.
Summary The addition of glucose to a suspension of Ehrlich ascites tumor cells results in rapid acidification of the extracellular medium due to lactic acid production. The nature of the H+ efflux mechanism has been studied by measuring the time course of the acidification, the rate of proton efflux, the direction and relative magnitude of the H+ concentration gradient, and the voltage across the membrane. Using the pH-sensitive dye acridine orange, we have established that after addition of 10mm glucose an outward-directed H+ concentration gradient develops. As the rate of glycolysis slows, the continued extrusion of H+ reverses the direction of the H+ concentration gradient. Changes in absorbance of the voltagesensitive dye diethyloxadicarbocyanine iodide (DOCC), and changes in the distribution of the lipid permeant cation tetraphenyl phosphonium, showed a dramatic and persistent hyperpolarization of the membrane voltage after glucose addition. The hyperpolarization was prevented by the protonophore tetrachlorosalicylanalide (TCS) and by valinomycin, but not by the neutral-exchange ionophore nigericin. Inhibitors of lactate efflux were found to reduce the rate of acidification after glucose addition but they had no effect on the magnitude of the resulting hyperpolarization. On the basis of these and other data we suggest that an active electrogenic pump mechanism for H+ efflux may be activated by glucose and that this mechanism operates independently of the lactate carrier system.  相似文献   

13.
The energetics of α-aminoisobutyric acid transport were examined in Vibrio costicola grown in a medium containing the NaCl content (1 M) optimal for growth. Respiration rate, the membrane potential (Δψ) and α-aminoisobutyric acid transport had similar pH profiles, with optima at 8.5–9.0. Cells specifically required Na+ ions to transport α-aminoisobutyric acid and to maintain the highest Δψ (150–160 mV). Sodium was not required to sustain high rates of O2-uptake. Δψ (and α-aminoisobutyric acid transport) recovered fully upon addition of Na+ to Na+-deficient cells, showing that Na+ is required in formation or maintenance of the transmembrane gradients of ions. Inhibitions by protonophores, monensin, nigericin and respiratory inhibitors revealed a close correlation between the magnitudes of Δψ and α-aminoisobutyric acid transport. Also, dissipation of Δψ with triphenylmethylphosphonium cation abolished α-aminoisobutyric acid transport without affecting respiration greatly. On the other hand, alcohols which stimulated respiration showed corresponding increases in α-aminoisobutyric acid transport, without affecting Δψ. Similarly, N,N′-dicyclohexylcarbodiimide (10 μM) stimulated respiration and α-aminoisobutyric acid transport and did not affect Δψ, but caused a dramatic decline in intracellular ATP content. From these, and results obtained with artificially established energy sources (Δψ and Na+ chemical potential), we conclude that Δψ is obligatory for α-aminoisobutyric acid transport, and that for maximum rates of transport an Na+ gradient is also required.  相似文献   

14.
Energy-linked swelling of EDTA submitochondrial particles   总被引:1,自引:0,他引:1  
The osmotic properties of EDTA submitochondrial particles have been studied by means of light-scattering measurements and radioisotopic determination of water distribution. It is shown that EDTA particles exhibit a respiration-linked swelling which: (i) requires oligomycin and NO3?; (ii) is promoted by nigericin and inhibited by valinomycin in the presence of K+ but not in the presence of Na+; and (iii) is reversed by FCCP. It is concluded that the energy-linked swelling of EDTA particles is caused by energy-linked influx of salts.  相似文献   

15.
1. A23187 will uncouple electron transport by broken chloroplasts in a divalent cation dependent manner provided that they have been treated with a low concentration of EDTA.2. A23187 stimulates oxaloacetate-dependent oxygen evolution and inhibits phosphoglycerate reduction by intact chloroplasts isolated in a cation-free medium whereas the full effect of nigericin was dependent on the presence of external K+.3. Uncoupling of oxaloacetate reduction by A23187 in intact chloroplasts is inhibited by EDTA and this effect is overcome by excess Mg2+.4. The results suggest that divalent and not monovalent cations are available for collapsing the light-induced H+ gradient within the intact organelle.  相似文献   

16.
Thomas Graan  Donald R. Ort 《BBA》1981,637(3):447-456
Full development of the capacity for ATP formation in isolated thylakoid membranes coincides with the beginning of illumination. Indeed, the yield of ATP per ms of illumination is about twice as great during the first 15 ms of high-intensity illumination as it is thereafter. The presence of valinomycin and K+ prevents the formation of a membrane potential (as indicated by the obliteration of most of the change in absorbance at 518 nm) and at the same time delays the formation of the capacity for ATP synthesis for many milliseconds. Presumably, phosphorylation is initially dependent on a rapidly formed membrane potential, whereas after a delay a ΔpH sufficient to drive ATP formation forms. The actual duration of this delay depends on the phosphoryl group transfer potential (i.e., ΔGATP) of the ATP-synthesizing reaction. If the delay in the presence of valinomycin and K+ represents the time required to develop a ΔpH capable of driving phosphorylation by itself, then the effect of ΔGATP on the duration of the delay suggests that the onset of phosphorylation is determined by the magnitude of the electrochemical potential of protons and not by factors affecting the activation of the coupling factor enzyme. The initial ATP formation, which is almost entirely dependent on the electrical potential, should not be affected by the electrically neutral exchange of cations catalyzed by nigericin. When the external pH is 7.0 this seems to be true, since the ATP synthesis which is initially sensitive to valinomycin and K+ is largely insensitive to nigericin and K+. However, when the external pH is 8.0 the response to nigericin is exactly the opposite and the ATP formation which is sensitive to valinomycin is also abolished by nigericin. These data suggest that there may be either an energetic requirement for both a ΔpH and membrane potential at alkaline pH or a non-energetic requirement for a minimum proton activity in the initiation of phosphorylation.  相似文献   

17.
A burst of proton ejection was observed during the initial steps of Ca2+ uptake by sarcoplasmic reticulum vesicles. The initial rate of this proton ejection is considerably higher than the initial rate of Ca2+ uptake, and is independent of the amount of accumulated Ca2+. The ejection of protons is a transmembrane event, since it is dissipated by the ionophore X-537A, and does not occur when the ionophore is added before the initiation of the transport of Ca2+. The low proton permeability of the membranes is largely increased by X-537A. The studies of facilitated diffusion of protons in the presence of the ionophore permitted the estimation of the pH within the vesicles. A fast alkalinization occurs within the vesicles during the initial steps of Ca2+ uptake, as revealed by sequestered bromothymol blue. The change in absorbance of this dye corresponds to a change of 0.15 pH unit within the vesicles, and a maximal transmembrane ΔpH of about 0.5 may build up. Since such a gradient may not account energetically for the transmembrane gradients of Ca2+, I suggest that a transmembrane electrical potential may develop as a consequence of proton ejection.  相似文献   

18.
The pH within isolated Triton WR 1339-filled rat liver lysosomes was determined by measuring the distribution of [14C]methylamine between the intra- and extralysosomal space. The intralysosomal pH was found to be approximately one pH unit lower than that of the surrounding medium. Increasing the extralysosomal cation concentration lowered the pH gradient by a cation exchange indicating the presence of a Donnan equilibrium. The lysosomal membrane was found to be significantly more permeable to protons than to other cations. The relative mobility of cations through the lysosomal membrane is H+ ? Cs+ > Rb+ > K+ Na+ > Li+ ? Mg2+, Ca2+. The presented data suggest that the acidity within isolated Triton WR 1339-filled lysosomes is maintained by: (1) a Donnan equilibrium resulting from the intralysosomal accumulation of nondifussible anions and (2) a selective permeability of the lysosomal membrane to cations.  相似文献   

19.
Haim Garty  S.Roy Caplan 《BBA》1977,459(3):532-545
The uptake of rubidium in intact Halobacterium halobium cells was followed, and found to be light-dependent. The exchange process is slow, the steady-state rate of 86Rb+/Rb+ exchange being given by k = 6.3 · 10?4 min?1. Starved cells exhibited a faster rate than unstarved cells. The influx of 86Rb+ was almost completely blocked in the presence of proton conductors (CCCP, FCCP, and SF 6847), and was sensitive to the presence of the permeant cation TPMP+. Valinomycin very slightly increased the rate of uptake, while 1 · 10?6 M nigericin showed significant inhibition. On the other hand, release of 86Rb+ was not light-dependent, although still affected by uncouplers, TPMP+, and nigericin. These experimental observations may be explained in terms of a passive flux driven by an electrical potential difference, and influenced by positive isotope interaction within the membrane. In carefully matched influx-efflux studies, the extent of the positive isotope interaction was measured. Using the formal treatment of Kedem and Essig, the ratio (exchange resistance)/(resistance to net flow) for 86Rb+ was found to be 1.7.  相似文献   

20.
Swelling of nonenergized heart mitochondria suspended in acetate salts appears to depend on the activity of an endogenous cation/H+ exchanger. Passive swelling in acetate shows a characteristic cation selectivity sequence of Na+ >Li+ >K+, Rb+, Cs+, or tetramethylammonium, a sharp optimum at pH 7.2–7.3, activation by Ca2+, and loss of activity on aging which can be related to loss of endogenous K+. The reaction is nearly insensitive to either addition of exogenous Mg2+ or removal of membrane Mg2+ with EDTA. Each of these characteristics of passive swelling in acetate salts is duplicated in chloride media when tripropyltin is added to induce Cl?/OH? exchange. In contrast to nonenergized mitochondria, swelling of respiring mitochondria has been postulated to depend on electrophoretic uptake of cations in response to an interior negative membrane potential. Respiration-dependent swelling in acetate shows an indistinct cation selectivity sequence with Li+ and Na+ supporting higher rates of swelling at higher efficiency than K+, Rb+, and Cs+. The high rates of respiration-dependent swelling in Li+ and Na+ are inhibited by low levels of exogenous Mg2+ (Ki of 5–10 μm), but a significant swelling with almost no cation selectivity persists in the presences of 2 mm Mg2+. Removal of membrane Mg2+ by addition of EDTA strongly activates the rate of respiration-dependent swelling and converts a sigmoid dependency of swelling rate on Li+ concentration to a hyperbolic one with a Km of about 14 mm Li+. The cation selectivity and Mg2+ dependence of the reaction induced in chloride salts by tripropyltin are identical to these properties in acetate. Energy-dependent swelling in acetate shows optimum activity at pH 6.5 which appears related to the availability of free acetic acid, since the corresponding reaction induced in chloride shows a broad optimum at about pH 7.5. These studies support the concept that monovalent cations enter nonenergized mitochondria by electroneutral exchange with protons but penetrate respiring mitochondria by electrophoretic movement through one or more uniport pathways. They further suggest that both a Mg2+-sensitive uniport with high activity for Na+ and Li+ and a Mg2+-insensitive pathway with little cation discrimination are available in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号