首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The study attempted to define characteristics of thymic epithelial cells within rat thymus based on the expression of neuroendocrine markers. Using an immunohistochemical approach, the following markers were localised: protein gene product 9.5 (PGP 9.5), neuron-specific enolase (NSE) and chromogranin A (ChA). It was shown that cells displaying immunostaining typical for individual markers reside in distinct regions of the thymus and represent subtypes within various populations of thymic epithelial cells. An immunoreactivity for PGP 9.5 was found exclusively in a subtype of cortical epithelial cells, located mostly within the inner zone of the cortex. On the other hand, NSE represented a marker of most epithelial cells located in the medulla. Few such cells which were negative for NSE proved positive for ChA. Among the cells with a strong reaction for NSE some cells also manifested a positive reaction for ChA. While the pattern of neuroendocrine marker distribution may reflect functional properties of thymic epithelial cells which might be different within distinct areas of the thymus, the differential expression of individual markers seems to reflect biological activity of the cells and/or distinct stages of their differentiation.  相似文献   

2.
This work explores the phenotypic changes affecting transformed cells in an experimental model of diethylstilbestrol (DES)-induced renal tumours in male Syrian hamster. This estrogen-induced neoplasm presents an important cytological pleomorphism and its origin remains largely controversial. In order to characterize phenotypic variations during tumour progression, the occurrence of seven lineage markers was analysed by a morphometric approach in kidney sections of DES-exposed hamsters (6–;11 months). S100 protein, neuron-specific enolase (NSE) and vimentin are expressed by a large percentage of malignant cells during tumour development. Glial fibrillary acidic protein (GFAP), protein gene product 9.5 (PGP 9.5) and desmin are mostly evidenced in advanced neoplasm whereas Leu 7 always presents a focal expression. As evidenced by double-label immunofluorescence, the coexpression of three important neuroectodermal lineage markers (S100, NSE and PGP 9.5) in earliest tumour buds points to a peripheral nerve sheath origin for this neoplasm thus confirming previously published data. For each marker, the fluctuations of expression levels during tumour progression as well as the spatial heterogeneity of distribution suggest variable phenotypic differentiation of transformed cell populations. This observation is largely corroborated by double-label immunofluorescence showing coexpression modification of several markers during tumour progression. This points to a complex dynamic and spatial self-organization of different phenotypes within neoplasms. Altogether, these results support the concept that DES-induced kidney tumours are not made of unstructured cell populations but represent adaptive complex dynamic biosystems.  相似文献   

3.
This study was designed to investigate (a) the presence of protein gene product 9.5 (PGP 9.5), ubiquitin, and neuropeptide Y (NPY) in the neuroendocrine and secretory epithelium of the human normal prostate and its secretions, and (b) the changes in immunoreactivity to these proteins in men with benign prostatic hyperplasia. Western blotting and light microscopic immunohistochemistry techniques were used and the numerical density of immunoreactive neuroendocrine cells, and the volume fractions of immunostained secretory epithelium were evaluated. Western blotting revealed the presence of the three antigens in both tissue homogenates and prostate secretion. Some neuroendocrine cells immunoreacted to PGP 9.5 and NPY in all the prostate regions of control specimens. Ubiquitin immunoreactivity was detected in the nuclei from both basal cells and secretory epithelial cells. The cytoplasm of the secretory cells and the glandular lumen also showed immunostaining for the three proteins. The numerical densities of both PGP 9.5 and NPY neuroendocrine cells were lower in hyperplasia than in controls. No differences in the volume fraction occupied by epithelial immunostaining to both proteins was found between hyperplastic and control prostates. We concluded that (a) PGP 9.5 and NPY, but not ubiquitin, are common antigens in both neuroendocrine and secretory prostate cells, (b) the three immunoreactive proteins contribute to the prostate secretions, and (c) the secretion of ubiquitin is markedly diminished in the hyperplastic epithelium.(J Histochem Cytochem 48:1121-1130, 2000)  相似文献   

4.
 Morphological changes in developing human gustatory papillae during the 6th to the 23rd postovulatory week have been studied. The general innervation pattern of taste papillae and taste bud primordia was revealed immunohistochemically using antibodies against protein gene product 9.5 (PGP9.5), neurofilament H (NFH), neurofilament L (NFL), neurone-specific enolase (NSE), and tubulin. The autonomic and somatosensory nerve supply has been investigated using antibodies against substance P (SP), calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), neuropeptide Y (NPY), the neuronal form of nitric oxide synthase (n-NOS), and, enzyme histochemically, NADPH-diaphorase. Nerve fibers approach the basal membrane of the lingual epithelium around the 7th postovulatory week and invade the epithelium of papilla-like structures at the 8th week, but some also penetrate the basal membrane of the non-papillary epithelium. They are in close contact with slender epithelial cells that are considered to be the taste bud’s progenitor cells. Early human taste buds situated at the anterior part of the tongue do not necessarily require a dermal (later fungiform) papilla. The NADPH-diaphorase reaction revealed positive results in dermal nerve fibers, but the immunohistochemical reaction against n-NOS was negative. Immunohistochemical detection of neuropeptides and vasoactive substances rendered negative results for developmental stages of 7–18 postovulatory weeks. By the 18th week, only SP was detected in dermal papillae, but not in the vicinity of taste buds’ primordia. Thus, autonomic and somatosensory nerves seem not to play a key role in formation and maintenance of early human taste buds. Accepted: 31 July 1997  相似文献   

5.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

6.
The presence and pattern of coexistence of some biologically active substances in nerve fibres supplying the mammary gland in the immature pig were studied using immunohistochemical methods. The substances studied included: protein gene product 9.5 (PGP), tyrosine hydroxylase (TH), somatostatin (SOM), neuropeptide Y (NPY), galanin (GAL), calcitonin gene-related peptide (CGRP) and substance P (SP). The mammary gland was found to be richly supplied by PGP-immunoreactive (PGP-IR) nerve fibres that surrounded blood vessels, bundles of smooth muscle cells and lactiferous ducts. The vast majority of these nerves also displayed immunoreactivity to TH. Immunoreactivity to SOM was observed in a moderate number of nerve fibres which were associated with smooth muscles of the nipple and blood vessels. Immunoreactivity to NPY occurred in many nerve fibres associated with blood vessels and in single nerves supplying smooth muscle cells. Solitary GAL-IR axons supplied mostly blood vessels. Many CGRP-IR nerve fibres were associated with both blood vessels and smooth muscles. SP-IR nerve fibres richly supplied blood vessels only. The colocalization study revealed that SOM, NPY and GAL partly colocalized with TH in nerve fibres supplying the porcine mammary gland.  相似文献   

7.
The occurrence and distribution of neuropeptide-containing fibres in the human parotid gland were examined by the peroxidase--antiperoxidase method with attention to the quality of fixation and the condition of patients. Many fibres immunoreactive for neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) and a moderate number of galanin- positive (GAL) fibres were distributed around the acini. A moderate number of NPY and VIP fibres were distributed around the intercalated ducts. The semiquantitative mean densities (_SD) of periacinar NPY, VIP and GAL fibres expressed as a percentage of the total protein gene product (PGP) 9.5 immunoreactive fibres were 75.62 _ 7.25%, 70.52 _ 9.33% and 41.76 _ 5.45%, respectively, whereas those of substance P (SP), calcitonin gene-related peptide (CGRP) and FMRF amide (FMRF) fibres were below 10%. The mean densities of NPY and VIP fibres around the intercalated ducts expressed as the percentage of PGP 9.5 fibres associated with these ducts were 52.37 _ 6.19% and 59.62 _ 7.02% respectively. Those of SP, CGRP, GAL, and FMRF fibres were below 10%. The densities of NPY, VIP, SP, CGRP, GAL and FMRF fibres around the striated and excretory ducts were also below 10%. In the vasculature, NPY fibres were the most prominent. Similarly, the mean density of perivascular NPY fibres was 93.76 _ 2.03%. No somatostatin or leucine or methionine enkephalin immunoreactivity was detected around the acini, duct system or blood vessels. These findings suggest that, in this gland, the periacinar NPY, VIP and GAL fibres may participate in regulating the synthesis of saliva and its secretion and that perivascular peptidergic fibres, especially NPY fibres, may be involved in controlling local blood flow This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
We have previously demonstrated that Goto-Kakizaki (GK) rats with spontaneous type-2 diabetes and peripheral neuropathy exhibit regional osteopathic changes. In the present study on 18 GK rats and 21 control Wistar rats, the occurrence of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), and the autonomic neuropeptide Y (NPY) was analysed in bone and joints, dorsal root ganglia and lumbar spinal cord by immunohistochemistry and radioimmunoassay (RIA). Immunohistochemistry disclosed a predominance of immunoreactivities in vessel-related nerve fibers, although some were also seen in free terminals. While SP, CGRP and NPY in periosteum, cortical bone and synovium was confined to neuronal tissue, the bone marrow in addition exhibited an abundance of NPY-positive megakaryocytes. Apart from this cellular source of NPY, the observations suggest that the three neuropeptides analysed in bone and joints are of neuronal origin. Quantification by RIA showed a significant decrease of NPY in cortical bone (-36%), bone marrow (-66%) and ankle (-29%) of GK rats. CGRP was decreased in the spinal cord (-19%) and dorsal root ganglia (-26%) but was unchanged in bone and joints, as with SP. Given the suggested anabolic role of NPY and CGRP on bone, neuropeptidergic deficit in diabetes may prove to be an important factor underlying the development of regional osteopenia.  相似文献   

9.
This study was performed to compare GAP-43, PGP 9.5, synaptophysin, and NSE as neuronal markers in the human intestine. GAP-43-immunoreactive nerve fibers were abundant in all layers of the ileum and colon. GAP-43 partially co-localized partially with every neuropeptide (VIP, substance P, galanin, enkephalin) studied. All neuropeptide-immunoreactive fibers also showed GAP-43 reactivity. By blind visual estimation, the numbers of GAP-43-immunoreactive fibers in the lamina propria were greater than those of PGP 9.5, synaptophysin, or NSE. In the muscle layer, visual estimation indicated that the density of GAP-43-immunoreactive fiber profiles was slightly greater than that of the others. The number and intensity of GAP-43-, PGP 9.5-, and NSE-immunoreactive fibers were estimated in sections of normal human colon and ileum using computerized morphometry. In the colon, the numbers of GAP-43-immunoreactive nerve profiles per unit area and their size and intensity were significantly greater than the values for PGP and NSE. A similar trend was observed in the ileum. Neuronal somata lacked or showed only weak GAP-43 immunoreactivity, variable PGP 9.5 immunoreactivity, no synaptophysin immunoreactivity, and moderate to strong NSE immunoreactivity. We conclude that GAP-43 is the superior marker of nerve fibers in the human intestine, whereas NSE is the marker of choice for neuronal somata. (J Histochem Cytochem 47:1405-1415, 1999)  相似文献   

10.
The cutaneous nerves of rat, cat, guinea pig, pig, and man were studied by immunocytochemistry to compare the staining potency of general neural markers and to investigate the density of nerves containing peptides. Antiserum to protein gene product 9.5 (PGP 9.5) stained more nerves than antisera to neurofilaments, neuron-specific enolase (NSE), and synaptophysin or histochemistry for acetylcholinesterase (AChE). Peptidergic axons showed species variation in density of distribution and were most abundant in pig and fewest in man. However, the specific peptides in nerves innervating the various structures were consistent between species. Nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP) and/or vasoactive intestinal polypeptide (VIP) predominated in all the species; those immunoreactive to tachykinins (substance P and neurokinin A [NKA]) and neuropeptide tyrosine (NPY) were less abundant. Neonatal capsaicin, at the doses employed in this study, destroyed approximately 70% of CGRP- and tachykinin-immunoreactive sensory axons; whereas 6-hydroxydopamine (6-OHDA) at the doses employed resulted in a complete loss of NPY and tyrosine hydroxylase (TH) immunoreactivity without affecting VIP, CGRP, and tachykinins. Thus, this study confirms that antiserum to PGP 9.5 is the most suitable and practical marker for the demonstration of cutaneous nerves. Species differences exist in the density of peptidergic innervation, but apparently not for specific peptides. Not all sensory axons immunoreactive for CGRP and substance P/NKA are capsaicin-sensitive. However, all sympathetic TH- and NPY-immunoreactive axons are totally responsive to 6-OHDA; but no change was seen in VIP-immunoreactive axons, suggesting some demarcation of cutaneous adrenergic and cholinergic sympathetic fibers.  相似文献   

11.
Rat plasma contains high basal levels (220 pmol/liter) of neuropeptide Y (NPY)-like immunoreactivity (LI) compared to pig (30 pmol/liter) and man (25 pmol/liter). The platelet-enriched fraction (PEF), obtained from rat blood contained 10,061 pmol/g NPY-LI. However, in human and pig blood, the PEF contained very low levels of NPY-LI. Gradient centrifugation of rat blood showed the highest concentration of NPY-LI (10.8 +/- 0.4 pmol/g) in the platelet fraction. The mononuclear cell fraction contained 1.64 +/- 0.16 pmol/g, whereas only 0.56 +/- 0.06 pmol/g of NPY-LI was found in the red blood cell/polymorphonuclear cell fraction. Characterization of NPY-LI in rat plasma and platelets by high-pressure liquid chromatography showed one predominating peak which coeluted with synthetic NPY (1-36) as well as three minor peaks, one of which coeluted with oxidized NPY. Analysis of NPY messenger RNA (mRNA) in bone marrow of the rat revealed a 0.79-kb-long NPY mRNA. This size is intermediate to the 0.82-kb NPY mRNA in brain and the 0.76-kb NPY mRNA in spleen. The highest level of NPY mRNA in rat blood was found in the mononuclear cell fraction but NPY mRNA was also detected in the platelet fraction. No NPY mRNA was detected in bone marrow or blood from pig and rabbit or from human blood or bone marrow. Forty-eight hours after treatment of rats with vinblastine the content of NPY mRNA and NPY-LI in rat blood was decreased, while the level of NPY-LI in bone marrow was markedly enhanced. Reserpine treatment caused an increase in NPY mRNA content in bone marrow and spleen. After administration of dexamethasone the level of NPY mRNA increased in both spleen and peripheral blood cells with increased NPY-LI content in the spleen. It is concluded that in addition to megakaryocytes in spleen and bone marrow, platelets and possibly also lymphocytes/monocytes in peripheral blood of the rat contain NPY mRNA and peptide. The expression of NPY mRNA in bone marrow, spleen, and blood is influenced by vinblastine, reserpine, and dexamethasone.  相似文献   

12.
Chemotherapy-induced bone marrow damage is accompanied by acute nerve injury in the bone marrow (BM), resulting in sensory and autonomic neuropathy. Cisplatin, a popular chemotherapy drugs, induces the impairment of hematopoietic stem cells (HSCs) and bone marrow regeneration, leading to chronic bone marrow abnormalities. Previously, we reported the protective roles of neuropeptide Y (NPY) against cisplatin-induced bone marrow impairment. In this study, we identified novel peptides, generated from full-length NPY that rescued cisplatin-induced sensory neuropathy and HSC suppression by regulating cell survival in the BM microenvironment. One of these peptides, especially, showed a better protective property against these impairments compared to that seen in full-length NPY. Therefore, we suggest the NPY sequences most effective against the chemotherapy-induced bone marrow dysfunction that could be potentially useful as therapeutic agents for patients receiving chemotherapy.  相似文献   

13.
The amount of neurons of periprostatic accessory ganglia in pre- and peripubertal rats was studied to ascertain whether the development of these autonomic ganglia is androgen-dependent. Stereological estimates of the volumes and number of neurons immunoreactive to protein gene product 9.5 (PGP 9.5), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) were carried out. Immunostaining of androgen receptors (AR) in the ganglia was also performed. The ganglionic neurons from the two groups studied were immunoreactive to PGP 9.5, NPY, and VIP. Almost all the neurons were immunostained for AR. The ganglionic volume showed a significant increase in peripubertal prostate in comparison with the prepubertal gland. No significant changes were observed with respect to the absolute number of neurons immunoreactive to all the antigens. The neuronal volume was significantly increased in peripubertal rats in comparison with prepubertal animals. These findings led us to the following conclusions: There is no evidence of neurogenesis during pubertal development in the periprostatic accessory ganglia of the rat. The increase of ganglionic volume in puberty is due to the growth in neuronal volume. There were no differences between the sizes of NPY and VIP neurons in pubertal periprostatic accessory ganglia. The development of periprostatic vegetative neurons is androgen-dependent.  相似文献   

14.
Functional data indicate that neurons in distinct regions of the heart exert preferential regional cardiac control. To date the regional distribution of specific types of neurons within the intrinsic cardiac nervous system remains unknown, as does their associations with distinct neurotransmitter and/or neuromodulatory profiles. This study was designed to ascertain: (1) the distribution of different classes of neurons within the intrinsic cardiac nervous system as determined by microscopic analysis; (2) the neurochemical profiles of neurons in differing atrial loci; (3) which neurochemicals are co-localized within specific populations of intrinsic cardiac neurons; and (4) the distribution of specific sub-populations of neurons expressing specific immunoreactivities. Taking advantage of confocal laser scanning microscopy and distinct immunoreactive fluorescent markers in various double-label combinations, several sub-populations of intrinsic cardiac neurons were identified. Of all identified neurons, 85-90% were located in ganglia (ganglionic neurons), the rest being isolated (individual neurons). The two general neuronal markers protein gene product 9.5 (PGP 9.5) and microtubule-associated protein (MAP-2) were associated with neurons clustered primarily in the interatrial septum and around the origins of the two vena cavae. Ganglia (group 1) contained three sub-populations of neurons: approx. 80% of ganglionic neurons were large (15-40 microm diameters; group 1a) and approx. 20% had smaller diameters (less than 15 microm; group 1b). All of these neurons were PGP-immunoreactive, exhibiting choline acetyltransferase (ChAT) immunoreactivity (IR), tyrosine hydroxylase (TH) IR, neuropeptide Y (NPY) IR, vasoactive peptide (VIP) IR and substance P (SP) IR. The remaining 5% of ganglionic neurons were small (group 1c; less than 20 microm). These displayed TH immunoreactivity but not MAP, PGP, CHAT, NPY or SP immunoreactivity. Ten to fifteen percent of all neurons loosely distributed outside of ganglia were small (10-25 microm) and located primarily around the origin of the superior vena cava. They displayed immunoreactivity to TH, ChAT, VIP, NPY and SP, but not to MAP-2 or PGP 9.5. These data provide anatomical and immunohistochemical evidence for specific localization of differing populations of intrinsic cardiac neurons with respect to their size, ganglionic distributions and capacity to express multiple neurotransmitters. Although the functional importance of such a regional distribution of differing populations of intrinsic cardiac neurons remains unknown, these anatomical data support the thesis that unique clustering of specific populations of neurons within this nervous system represents the anatomical substrate for complex local cardiac regulatory phenomena occurring at the level of the target organ.  相似文献   

15.
Neurogenic mechanisms seem to play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD), as suggested by a number of in vitro data. However, few studies have investigated the presence of neuropeptides in the airways of patients with COPD, and they have yielded conflicting results. The aim of this study is to compare the expression of the neuropeptide substance P (SP), vasoactive intestinal peptide (VIP), and neuropeptide Y (NPY) in the airways of smokers with and without COPD. Surgical lung samples were obtained from 15 smokers with COPD and 16 smokers with normal lung function, who underwent lobectomy for a solitary lung carcinoma. Airway expression and distribution of SP, VIP, and NPY were identified by immunohistochemistry and analyzed by a computerized image analysis system. Compared to smokers with normal lung function, COPD patients exhibited an increased immunoreactivity for SP and VIP, paralleled by a decreased NPY expression in the epithelium and glands, and a decreased expression of all these three neuropeptides in the smooth muscle layer. Therefore, in the present study we have documented a different expression and distribution of the neuropeptides SP, VIP, and NPY in the airways of smokers with and without COPD. These findings suggest a possible involvement of such neuropeptides in the pathogenesis of some changes occurring in COPD.  相似文献   

16.
《Tissue & cell》2016,48(5):552-557
This study investigated general morphology and immunohistochemical properties of nerve fibres supplying the mammary gland (MG) in the European beaver. The microscopic analysis of the beaver mammary gland revealed the presence of morphological structures which are characteristic for mammals. There were no distinct differences in the morphological features of the mammary gland between the juvenile and non-pregnant mature beaver.The nerve fibres were visualized using antibodies against protein gene product 9.5 (PGP) and biologically active substances including β-hydroxylase tyrosine (DβH), neuropeptide Y (NPY), calcitonine gene-related peptide (CGRP) and substance P (SP). The study has revealed that the MG in the juvenile and mature beaver is richly supplied with PGP-immunoreactive (PGP-IR) nerve fibres. The most abundant innervation was observed in the nipple and less numerous nerve terminals supplied the glandular tissue. Double-labelling immunohistochemistry disclosed that the majority of PGP-IR nerve fibres associated with blood vessels and smooth muscle cells in both the nipple and glandular tissue were also DßH-IR. However, these nerve terminals were less numerous in the glandular tissue than in the nipple. Most of the DßH-IR axons associated with arteries and smooth muscle cells in the entire gland also stained for NPY. Small number of DßH/NPY-IR fibres supplied veins. CGRP-IR fibres were more abundant than those expressing SP. No distinct differences in the distribution and immunohistochemical characteristic of nerve fibres were observed between the juvenile and adult animals. The distribution and immunohistochemical properties of nerve fibres supplying the gland in the beaver remind those previously described in other mammalian species.  相似文献   

17.
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY‐deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy‐induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy‐induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.  相似文献   

18.
The effect of neuropeptide Y (NPY), a co-transmitter with noradrenaline in peripheral sympathetic nerve fibers, on the osteoclastogenesis in mouse bone marrow cell cultures treated with isoprenaline, a beta-adrenergic receptor (beta-AR) agonist, was examined. The mouse bone marrow cells constitutively expressed mRNAs for the NPY-Y1 receptor and beta2-AR. NPY inhibited the formation of osteoclast-like cells induced by isoprenaline but not that by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) or soluble receptor activator of nuclear factor-kappaB ligand (RANKL); and it suppressed the production of RANKL and cyclic AMP (cAMP) increased by isoprenaline but not those increased by 1alpha,25(OH)2D3. NPY also inhibited osteoclastogenesis induced by forskolin, an activator of adenylate cyclase; however, it did not inhibit that induced by exogenously supplied dibutyryl cAMP, a cell-permeable cAMP analog that activates cAMP-dependent protein kinase. These results demonstrate that NPY inhibited the isoprenaline-induced osteoclastogenesis by blocking the agonist-elicited increases in the production of cAMP and RANKL in mouse bone marrow cells, suggesting an interaction between NPY and beta-AR agonist in bone resorption.  相似文献   

19.
The carotid body consists of chemoreceptive glomus cells, sustentacular cells and nerve endings. The murine carotid body, located at the carotid bifurcation, is always joined to the superior cervical ganglion of the sympathetic trunk. Glomus cells and sympathetic neurons are immunoreactive for the TuJ1, PGP9.5, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) markers. Glomus cells are also immunoreactive for serotonin (5-HT). A targeted mutation of Mash1, a mouse homolog of the Drosophila achaete-scute complex, results in the elimination of sympathetic ganglia. In Mash1 null mutant mice, the carotid body primordium forms normally in the wall of the third arch artery at embryonic day (E) 13.0 and continues to develop, although the superior cervical ganglion is completely absent. However, no cells in the mutant carotid body display the TuJ1, PGP 9.5, TH, NPY and 5-HT markers throughout development. The absence of glomus cells was also confirmed by electron microscopy. The carotid body of newborn null mutants is composed of mesenchymal-like cells and nerve fibers. Many cells immunoreactive for the S-100 protein, a sustentacular cell marker, appear in the mutant carotid body during fetal development. The Mash1 gene is thus required for the genesis of glomus cells but not for sustentacular cells.  相似文献   

20.
The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide. [BMB Reports 2015; 48(12): 645-646]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号