首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H.Y. Nakatani  B. Ke  E. Dolan  C.J. Arntzen 《BBA》1984,765(3):347-352
A Photosystem-II (PS-II)-enriched chloroplast submembrane fraction has been subjected to non-denaturing gel-electrophoresis. Two chlorophyll a (Chl a)-binding proteins associated with the core complex were isolated and spectrally characterized. The Chl protein with apparent apoprotein mass of 47 kDa (CP47) displayed a 695 nm fluorescence emission maximum (77 K) and light-induced absorption characteristics indicating the presence of the reaction center Chl, P-680, and its primary electron acceptor, pheophytin. A Chl protein of apparent apoprotein mass of 43 kDa (CP43) displayed a fluorescence emission maximum at 685 nm. We conclude that CP43 serves as an antenna Chl protein and the PS II reaction center is located in CP47.  相似文献   

2.
The room-temperature EPR characteristics of Photosystem II reaction center preparations from spinach, pokeweed and Chlamydomonas reinhardii have been investigated. In all preparations a light-induced increase in EPR Signal II, which arises from the oxidized form of a donor to P-680+, is observed. Spin quantitation, with potassium nitrosodisulfonate as a spin standard, demonstrates that the Signal II species, Z?, is present in approx. 60% of the reaction centers. In response to a flash, the increase in Signal II spin concentration is complete within the 98 μs response time of our instrument. The decay of Z? is dependent on the composition of the particle suspension medium and is accelerated by addition of either reducing agents or lipophilic anions in a process which is first order in these reagents. Comparison of these results with optical data reported previously (Diner, B.A. and Bowes, J.M. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoyunoglou, G., ed.), Vol. 3, pp. 875–883, Balaban, Philadelphia), supports the identification of Z with the P-680+ donor, D1. From the polypeptide composition of the particles used in this study, we conclude that Z is an integral component of the reaction center and use this conclusion to construct a model for the organization of Photosystem II.  相似文献   

3.
Pigment exchanges among photosystem reaction centers (RCs) are useful for the identification and functional analysis of chromophores in photosynthetic organisms. Pigment replacement within the spinach Photosystem II RC was performed with Chl d derived from the oxygenic alga Acaryochloris marina, using a protocol similar to that reported previously [Gall et al. (1998) FEBS Lett 434: 88–92] based on the incubation of reaction centers with an excess of other pigments. In this study, we analyzed Chl d-modified monomeric RC which was separated from Chl d-modified dimeric RC by size-exclusion chromatography. Based on the assumption of a constant ratio of two Pheo a molecules per RC, the number of Chl a molecules in Chl d-modified monomeric RCs was found to decrease from six to four. The absorption spectrum of the Chl d-modified monomeric RC at room temperature showed a large peak at 699.5 nm originating from Chl d and a small peak at 672.5 nm orignating from Chl a. Photoaccumulation of the Pheo a in Chl d-modified monomeric RC, in the presence of sodium dithionate and methyl viologen, did not differ significantly from that in control RC, showing that the Chl d-modified monomeric RC retains its charge separation activity and photochemically active Pheo a.  相似文献   

4.
This minireview is about the path that led me to the identification of the Photosystem II reaction center in oxygenic photosynthesis. It is based mostly on my own experiences and viewpoints. Thus, the article is essentially a personal account, and does not include all contributions that led to the identification of this functional unit of Photosystem II. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Absorption spectra of the D1-D2-cytochrom b559 complex at 4°C were investigated at pressures up to 300 MPa. Pressure effects were mostly reversible and independent of the detergent used (CHAPS or dodecyl--D-maltoside). Red-shifts were observed under pressure for the chlorophyll Qy- and the -carotene S0 S2 bands. The relatively small Qy-shift of approximately 0.15 cm-1/MPa is an indication for the absence of strongly coupled chlorophyll dimers within the reaction center and supports earlier reports from low-temperature measurements (Chang HC, Jankowiak R, Reddy NRS and Small GJ (1995) Chem Phys 197: 307–321). The carotene red-shift (seen in CHAPS) is much larger (0.5 – 0.6 cm-1/MPa) and within the range observed for excitonically coupled chlorophylls. However, since carotenes are more sensitive to changes of refractive index, we do not consider this evidence for excitonically coupled carotenes. Varying the pH and the detergent induced only small effects. Pigment exchange using high pressure instead of elevated temperature was not possible under the conditions tested.  相似文献   

6.
The nature of excitation energy transfer and charge separation in isolated Photosystem II reaction centers is an area of considerable interest and controversy. Excitation energy transfer from accessory chlorophyll a to the primary electron donor P680 takes place in tens of picoseconds, although there is some evidence that thermal equilibration of the excitation between P680 and a subset of the accessory chlorophyll a occurs on a 100-fs timescale. The intrinsic rate for charge separation at low temperature is accepted to be ca. (2 ps)–1, and is based on several measurements using different experimental techniques. This rate is in good agreement with estimates based on larger sized particles, and is similar to the rate observed with bacterial reaction centers. However, near room temperature there is considerable disagreement as to the observed rate for charge separation, with several experiments pointing to a ca. (3 ps)–1 rate, and others to a ca. (20 ps)-1 rate. These processes and the experiments used to measure them will be reviewed.Abbreviations Chl chlorophyll - FWHM full-width at half-maximum - Pheo pheophytin - PS II Photosystem II - P680 primary electron donor of the Photosystem II reaction center - RC reaction center The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

7.
In this Minireview, a comparison of the binding niches of the PS II cofactors from several existing models of the PS II reaction center is provided. In particular, it discusses a three dimensional model of the Photosystem II (PS II) reaction center including D1, D2 and cytochrome b559 proteins from the green alga Chlamydomonas reinhardtii that was specifically generated for this Minireview. This model is the most complete to date and includes accessory chlorophyllzs, a manganese cluster, two molecules of -carotene and cytochrome b559, all of which are essential components of the PS II reaction center. The modeling of the D1 and D2 proteins was primarily based on homology with the L and M subunits of the anoxygenic purple bacterial photosynthetic reaction centers. The non-homologous loop regions were built using a sequence specific approach by searching for the best-matched protein segments in the Protein Data Bank, and by imposing the matching conformations on the corresponding D1 and D2 regions. Cytochrome b559 which is in close proximity to D1 and D2 was tentatively modeled in / conformation and docked on the QB side of the PS II reaction center according to experimental suggestions. An alternate docking on the QA side is also shown for comparison. The cofactors in the PS II reaction center were modeled either by adopting the structures from the bacterial counterparts, when available, with modifications based on existing experimental data or by de novo modeling and docking in the most probable positions in the reaction center complex. The specific features of this model are the inclusion of the tetramanganese cluster (with calcium and chloride ions) in a open, C-shaped structure modeled within the D1/D2/cytochrome b559 complex with D1-D170, D1-E189, D1-D342 and D1-A344 as putative ligands; and the modeling of two cis -carotenes and two accessory chlorophyllzs liganded by D1-H118 and D2-H117. We also analyzed residues in the model which may be involved in the D1 and D2 inter-protein interactions, as well as residues which may be involved in putative bicarbonate and water binding and transport.  相似文献   

8.
《BBA》1987,893(2):267-274
The D1-D2-cytochrome b-559 reaction center complex and the 47 kDa antenna chlorophyll protein isolated from spinach Photosystem II were characterized by means of low temperature absorption and fluorescence spectroscopy. The low temperature absorption spectrum of the D1-D2-cytochrome b-559 complex showed two bands in the Qy region located at 670 and 680 nm. On the basis of its absorption maximum and orientation the latter component may be attributed at least in part to P-680, the primary electron donor of Photosystem II. The 47 kDa antenna complex showed absorption bands at 660, 668 and 677 nm and a minor component at 690 nm. The latter transition appeared to be associated with the characteristic low temperature 695 nm fluorescence band of Photosystem II. The 695 nm emission band was absent in the D1-D2 complex, which indicates that it does not originate from the reaction center pheophytin, as earlier proposed. The transition dipole responsible for the main fluorescence at 684 nm from this complex had a parallel orientation with respect to the membrane plane in the native structure. The reaction center preparation contains two spectrally distinct carotenoids with different orientations.  相似文献   

9.
We have recently reported the crystallization of the reaction center of Photosystem II in the presence of detergent mixtures [Adir N (1999) Acta Crystallogr D Biol Crystallogr D55: 891–894]. We have used high performance liquid chromatography, dynamic light scattering, native gel electrophoresis and thermoluminescence measurements to characterize the interaction between these detergent mixtures and RC II, to try and understand their role in the crystallization process. Size exclusion HPLC and dynamic light scattering confirmed that the isolated RC II used for crystallization was exclusively monomeric. Dynamic light scattering measurements show that the detergent mixtures formed single micelles within a limited range of hydrodynamic radii. Both size exclusion HPLC and dynamic light scattering were used to follow the interaction between the detergent mixtures and monomeric RC II. These techniques revealed a decrease in the detergent mixture treated RC II particle size (with respect with the untreated RC II), and that RC II from solubilized crystals contained particles of the same size. Native gel electrophoresis showed that this change in apparent size is not due to the disintegration of the internal structure of the RC II complex. Thermoluminescence measurements of solubilized RC II crystals showed charge recombination from the S2,3QA state, indicating that RC II remains functionally viable following detergent mixture treatment and crystallization. The role of the detergent mixtures in the crystallization of RC II is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Science has always been drawn to uncover fundamental life processes. Photosynthesis is one, if not the most fascinating, of them. Within it, the protein complexes that catalyze light-induced electron transport and photophosphorylation are enchanting creations of evolution. Plant Photosystem I (PS I) is not the largest protein complex in nature but it is the most elaborate in the number of prosthetic groups involved in its fabric. Thirty years ago, one of us (NN) developed a fascination for this complex and, despite the apparent neglect (lack of publications in the last few years), never let it go. Only a crystal structure at 2 A resolution will satiate our curiosity. In this minireview, we trace the past, and end the article with a comment on future prospects. For the present situation, see Parag Chitnis (2001).  相似文献   

11.
《BBA》2023,1864(4):148994
An alternative charge separation pathway in Photosystem II under the far-red light was proposed by us on the basis of electron transfer properties at 295 K and 5 K. Here we extend these studies to the temperature range of 77–295 K with help of electron paramagnetic resonance spectroscopy. Induction of the S2 state multiline signal, oxidation of Cytochrome b559 and ChlorophyllZ was studied in Photosystem II membrane preparations from spinach after application of a laser flashes in visible (532 nm) or far-red (730–750 nm) spectral regions. Temperature dependence of the S2 state signal induction after single flash at 730–750 nm (Tinhibition ~ 240 K) was found to be different than that at 532 nm (Tinhibition ~ 157 K). No contaminant oxidation of the secondary electron donors cytochrome b559 or chlorophyllZ was observed. Photoaccumulation experiments with extensive flashing at 77 K showed similar results, with no or very little induction of the secondary electron donors. Thus, the partition ratio defined as (yield of YZ/CaMn4O5-cluster oxidation):(yield of Cytb559/ChlZ/CarD2 oxidation) was found to be 0.4 at under visible light and 1.7 at under far-red light at 77 K. Our data indicate that different products of charge separation after far-red light exists in the wide temperature range which further support the model of the different primary photochemistry in Photosystem II with localization of hole on the ChlD1 molecule.  相似文献   

12.
We isolated highly-purified photochemically active photosystem (PS) II reaction center (RC) complexes from the cyanobacterium Synechocystis sp. PCC 6803 using a histidine-tag introduced to the 47 kDa chlorophyll protein, and characterized their spectroscopic properties. Purification was carried out in a one-step procedure after isolation of PS II core complex. The RC complexes consist of five polypeptides, the same as in spinach. The pigment contents per two molecules of pheophytin a were 5.8 +/- 0.3 chlorophyll (Chl) a and 1.8 +/- 0.1 beta-carotene; one cytochrome b(559) was found per 6.0 Chl a molecules. Overall absorption and fluorescence properties were very similar to those of spinach PS II RCs; our preparation retains the best properties so far isolated from cyanobacteria. However, a clear band-shift of pheophytin a and beta-carotene was observed. Reasons for these differences, and RC composition, are discussed on the basis of the three-dimensional structure of complexes.  相似文献   

13.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

14.
《BBA》1985,807(1):74-80
Photochemical and chemical properties of two Photosystem II reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. were examined. (1) The intact reaction center complexes contain each one of photoreducible pheophytin, secondary electron acceptor (QA) and cytochrome b-559 per 32–46 chlorophyll a molecules. (2) The reaction center complexes which lack the chlorophyll-binding 40 kDa polypeptide (CP2-b) showed photoaccumulation of reduced pheophytin and photoreduction of QA, indicating that the complexes can carry out not only the primary-charge separation, but also the stabilization of the separated charges. The contents of pheophytin, QA and cytochrome b-559 were, however, considerably reduced in CP2-b. (3) The two complexes contained very small amounts of manganese. (4) CP2-b was partially deprived of the small polypeptides: the ratios of the peak areas (corrected for molecular weight) of the 47/40/31 plus 28/9 kDa polypeptide bands resolved in sodium dodecyl sulfate gels after electrophoresis under denaturating conditions were approx. 1:1:2:2 in the intact complexes and 1:0:0.4:1 in CP2-b. The results were discussed in terms of the functional molecular organization of the Photosystem II reaction center complexes.  相似文献   

15.
Structures of the rye chloroplast DNA regions, containing psbD and psbI genes coding for the components of the reaction centre of photosystem II, D2 protein and I polypeptide, respectively, have been determined. The gene trnS for tRNA(Ser) (GCU) is located 111 bp downstream from the stop codon of the psbI gene on the opposite strand. The high homology between the rye BamHI-fragment comprising these genes and his counterpart from wheat are discussed.  相似文献   

16.
Oxygen-evolving PS II particles from the thermophilic cyanobacterium Synechococcus elongatus are partially purified by centrifugation on a sucrose gradient and are bound to a Chelating Sepharose column loaded with Cu2+ ions. Bound particles are then transformed into PS II RC complexes by two washing steps. First, washing with a phosphate buffer (pH=6.5) containing 0.02% of SB 12 removes the rest of phycobilins and leaves pure PS II core particles on the column. Second, washing with a phosphate buffer (pH=6.2) containing 0.2 M LiClO4 and 0.05% of DM removes CP 47 and CP 43 and leaves bare PS II RC complexes on the column. These are then eluted with a phosphate buffer containing 1% of dodecylmaltoside (DM). The molar ratio of pigments in the eluate changes with the progress of elution but around the middle of the elution period a nearly stable ratio is maintained of Chl a: Pheo a: Car: Cyt b 559 equal to 2.9: 1: 0.9: 0.8. In these fractions the photochemical separation of charges could be demonstrated by accumulation of reduced pheophytin (A of 430–440 nm) and by the flash induced formation of P680+ (A at 820 nm). The relatively slow relaxation kinetics of the latter signal (t1/2 1 ms) may suggest that in a substantial fraction of the RCs QA remains bound to the complex.Abbreviations Car -carotene - Chl a chlorophyll a - CP43, CP47 chlorophyll-proteins, with Rm 43 and 47 kDa - DBMIB dibromothymoquinone,2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone - DM -dodecyl-d-maltoside - HPLC high-performance liquid chromatography - OG n-octyl--d-glucopyranoside - IMAC immobilied metal affinity chromatography - Pheo a pheophytin a - PQ-9 plastoquinone-9 - P680 primary electron donor in PS II - PS II RC Photosystem II reaction centre - QA primary electron acceptor in PS II - SB-12 N-dodecyl-N,N-dimethyl-3-amino-1-propanesulphonate, (sulphobetain 12)  相似文献   

17.
Photoinhibition in the green alga Dunaliella salina is accompanied by the formation of inactive Photosystem II reaction centers. In SDS-PAGE analysis, the latter appear as 160 kD complexes. These complexes are structurally stable, enough to withstand re-electrophoresis of excised gel slices from the 160 kD region. Western blot analyses with specific polyclonal antibodies raised against the D1 or D2 reaction center proteins provided evidence for the presence of both of these polypeptides in the re-electrophoresed 160 kD complex. Incubation of excised gel slices from the 160 kD region, under aerobic conditions at 4°C for a prolonged period of time, caused a break-up of the 160 kD complex into a 52 kD D1-containing and 80 and 26 kD D2-containing pieces. Western blot analysis with polyclonal antibodies raised against the apoproteins of CPI (reaction center proteins of PS I) did not show cross-reaction either with the 160 kD complex or with the 52, 80 and 26 kD pieces. The results show the presence of both D1 and D2 in the 160 kD complex and strengthen the notion of a higher molecular weight D1- and D2-containing complex that forms upon disassembly of photodamaged PS II units.Abbreviations Chl chlorophyll - PS II Photosystem II - D1 the 32 kD reaction center protein of PS II, encoded by the chloroplast psbA gene - D2 the 34 kD reaction center protein of PS II, encoded by the chloroplast psbD gene - CPI the 82 and 83 kD reaction center proteins of PS I, encoded by the chloroplast psaA and psaB genes - HL high light - LL low light This publication is dedicated to the memory of the late Professor Daniel Arnon, whom the first author will fondly remember for his many accounts of past scientific discovery and debate.  相似文献   

18.
The presence of arginine in the active center of D-amino-acid oxidase is well documented although its role has been differently interpreted as being part of the substrate-binding site or the positively charged residue near the N1-C2 = O locus of the flavin coenzyme. To have a better insight into the role of the guanidinium group in D-amino-acid oxidase we have carried out inactivation studies using phenylglyoxal as an arginine-directed reagent. Loss of catalytic activity followed pseudo-first-order kinetics for the apoprotein whereas the holoenzyme showed a biphasic inactivation pattern. Benzoate had no effect on holoenzyme inactivation by phenylglyoxal and the coenzyme analog 8-mercapto-FAD did not provide any additional protection in comparison to the native coenzyme. Spectroscopic experiments indicated that the modified protein is unable to undergo catalysis owing to the loss of coenzyme-binding ability. Analyses of time-dependent activity loss versus arginine modification or [14C]phenylglyoxal incorporation showed the presence of one arginine essential for catalysis. The protection exerted by the coenzyme is consistent with the involvement of an active-site arginine in the correct binding of FAD to the protein moiety. Comparative analyses of CNBr fragments obtained from apoenzyme, holoenzyme and the 8-mercapto derivative of D-amino-acid oxidase after reaction with phenylglyoxal did not provide unequivocal identification of the essential arginine residue within the primary structure of the enzyme. However, they suggest that it might be localized in the N-terminal portion of the polypeptide chain and point to a role of phenylglyoxal-modifiable arginine in binding to the adenylate/pyrophosphate moiety of the flavin coenzyme.  相似文献   

19.
Isamu Ikegami  Sakae Katon 《BBA》1975,376(3):588-592
The reaction center chlorophyll of Photosystem I in spinach chloroplasts was highly enriched. Preparations having 5–9 chlorophylls per 1 P700 were obtained by treating the Photosystem I particles prepared by digitonin treatment of chloroplasts with wet diethyl ether. All P700 present in the extracted particles was found to be photoactive, undergoing oxidation upon illumination.  相似文献   

20.
Direct measurements of the intrinsic rate of primary charge separation in the isolated Photosystem II (PS II) reaction center complex had to await the availability of suitable, stabilized reaction center materials as well as sophisticated femtosecond transient absorption spectroscopic techniques. The events that led to the first direct measurements of the primary charge separation act in PS II and discussions of the results thereafter are chronicled in this brief historical review. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号