首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ameloblastin is an enamel-specific protein that plays critical roles in enamel formation, as well as adhesion between ameloblasts and the enamel matrix, as shown by analyses of ameloblastin-null mice. In the present study, we produced two distinct antibodies that recognize the N-terminus and C-terminus regions of caiman ameloblastin, in order to elucidate the fate of ameloblastin peptides during tooth development. An immunohistochemical study using the antibodies showed that caiman ameloblastin was a tooth-specific matrix protein that may initially be cleaved into two groups, N- and C-terminal peptides, as shown in mammals. The distribution of the N-terminal peptides was much different from that of the C-terminal peptides during enamel formation; however, it was similar to that of mammalian ameloblastin. Although ameloblastin is thought to have a relationship with the enamel prismatic structure in mammals, in the caiman, which has non-prismatic enamel, functional ameloblastin has no relationship with any enamel structure. Consequently, it is suggested that ameloblastin has kept its original functions during the evolutionary transition from reptiles to mammals and that it has been conserved in both lineages during more than 200 million years of evolution. Our results support the notion that ameloblastin acts as a factor for ameloblast adhesion to enamel matrix, because distribution of the C-terminal peptides was consistently restricted on the surface layers of enamel matrix specimens ranging from immature to nearly completely mature. The principal molecules that provide the adhesive function are presumably C-terminal peptides.  相似文献   

2.
S Toyosawa  C O'hUigin  H Tichy  J Klein 《Gene》1999,234(2):307-314
Several clones containing DMP1 cDNA were isolated from a caiman tooth library by screening with a platypus DMP1 probe. The caiman DMP1 shows little amino acid sequence similarity to mammalian DMP1s for much of its length. A few highly conserved regions can, however, be identified that correspond to the slowly evolving parts of the corresponding mammalian genes. Southern blot analysis using probes comprising either conserved regions or longer segments of the gene indicates that only a single DMP1 locus exists. In coding regions, exon-intron boundaries and reading frames are shared by caiman and mammalian genes with the exception of exons 1 and 5, which are longer in the caiman. The repetitive sequence of the last exon is shared by mammals and caiman as are the high Ser content and acidity due to a high proportion of Asp and Glu residues. The conserved mammalian cell-attachment signal Arg-Gly-Asp is absent in the caiman DMP1. In contrast to the amelogenin gene, the DMP1 gene appears to evolve rapidly in vertebrates.  相似文献   

3.
The emergence of jawed vertebrates was predicated on the appearance of several innovations, including tooth formation. The development of teeth requires the participation of several specialized genes, in particular, those necessary for the formation of hard tissues—dentin, enamel, and cementum. Some vertebrates, most conspicuously birds, secondarily lost the tooth-forming ability. To determine the fate of some of the tooth-forming genes in the birds, we tested a domestic fowl cDNA library for the expression of the dentin matrix protein 1 (DMP1) gene. The library was prepared from the poly(A+) RNA isolated from the jaws of 11- to 13-day-old embryos and the testing was carried out by the polymerase chain reaction with degenerate primers designed on the basis of the available mammalian and reptile sequences. A chicken homologue of the DMP1 gene identified by this approach was shown to be expressed in the jaws and long bones, the same two tissues as in mammals. The chicken DMP1 gene has an exon/intron organization similar to that of its mammalian and reptile counterparts. The chicken gene contains three short highly conserved segments, the rest of the gene being poorly alignable or not alignable with its mammalian or reptilian homologues. The distribution of similarities and dissimilarities along the gene is indicative of a mode of evolution in which only short segments are kept constant, while the rest of the gene is relatively free to vary as long as the proportion of certain amino acid residues is retained in the encoded polypeptide. The DMP1 gene may have been retained in birds because of its involvement in bone formation. Received: 5 April 1999 / Accepted: 9 August 1999  相似文献   

4.
The amelogenin gene contributes the majority of tooth enamel proteins and plays a significant role in enamel biomineralization. While several mammalian and reptilian amelogenins have been cloned and sequenced, basal vertebrate amelogenin evolution remains to be understood. In order to start elucidating the structure and function of amelogenins in the evolution of enamel, the leopard frog (Rana pipiens) was used as a model. Tissues from Rana pipiens teeth were analyzed for enamel structure and RNA extracts were processed for sequence analysis. Electron microscopy revealed that Rana pipiens enamel contains long and parallel crystals similar to mammalian enamel, while immunoreactions confirmed the site-specific localization of cross-reactive amelogenins in Rana pipiens enamel. Sequencing of amelogenin PCR products revealed a 782bp cDNA with a 546-nucleotide coding sequence encoding 181 amino acids. The homology of the newly discovered Rana pipiens amelogenin nucleotide and amino acid sequence with the published mouse amelogenin was 38.6% and 45%, respectively. These findings report the first complete amelogenin cDNA sequence in amphibians and indicate a close homology between mammalian enamel formation and Rana pipiens enamel biomineralization.  相似文献   

5.
6.
Integrin-binding sialoprotein (IBSP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family; and the whole SIBLING family is further included in a larger secretory calcium-binding phosphoprotein (SCPP) family. SIBLING proteins are known to construct a part of the non-collagenous extracellular matrices of calcified tissues, and considered to have arisen by duplication and subsequent divergent evolution of a single ancient gene. To understand the alterations of SIBLING molecules associated with the evolution of calcified tissues in vertebrates, we initiated a search for lower vertebrate orthologs of SIBLING genes. In the present study, an IBSP ortholog from a reptile (caiman) and two distinct orthologs from an amphibian (African clawed toad) were identified and characterized. As expected, the toad IBSP genes were transcribed only in calcified tissue (jaw and tibia), as also seen in mammals. The caiman, toad, avian, and mammalian IBSPs share several unique features specific for IBSP and apparently have similar properties. Furthermore, analysis of the sequences suggested that the IBSP molecule might have gradually intensified its functions related to calcification during its evolutionary process through tetrapods.  相似文献   

7.
As the principal components of the developing tooth enamel matrix, amelogenins play a significant role in tooth enamel formation and organization. In order to elucidate the structure and function of amelogenins in the evolution of enamel, we have selected the Iguana iguana as a squamate model organism. Here we report the first complete squamate amelogenin sequence available as of yet and document unique features of Iguana amelogenins and enamel. Transmission electron microscopy documented randomly oriented Iguana enamel crystals during the elongation phase compared with organized enamel crystal patterns at comparable stages in mammals. Sequencing of PCR amplified products revealed a full-length I. iguana amelogenin cDNA containing 877 nucleotides with a 564 nucleotide coding sequence encoding 187 amino acids. The homologies of the newly discovered I. iguana amelogenin amino acid sequence with the published mouse, caiman (Palaeosuchus), and snake (Elaphe) amelogenin were 41.3%, 53.5%, and 55.5%, respectively. On Western blots one major protein with a molecular weight of 24 kDa, and two minor proteins with molecular weights of 28 and 13.5 kDa, respectively, were detected based on the cross-reactivity of antisera against recombinant Rana pipiens amelogenin proteins. Sequence analysis revealed a moderate sequence homology between mammalian and reptilian amelogenin genes. A significant alteration was the deletion of the hydrophilic GSP sequence from exon 3 in the mouse sequence resulting in a conversion to a hydrophobic region in Iguana. Together, these findings identified a novel amelogenin cDNA sequence in the squamate reptilian I. iguana and functional implications for the evolution of amelogenins and enamel in squamates.  相似文献   

8.
早期哺乳动物三尖齿兽类牙齿的超微结构   总被引:2,自引:0,他引:2  
本文用扫描电镜研究了中国云南禄丰盆地下禄丰组发现的以及英国威尔士晚三迭世的三尖齿兽类牙齿的超微结构.其釉质具有准釉柱结构,它们呈并行排列从釉牙质界延伸到釉质外表面.这种准釉柱结构由很多羽支状排列的磷灰石微晶组成.微晶的C轴与准釉柱的长轴形成交叉的角度大约为10-20度.早期哺乳动物牙齿釉质的准釉柱结构,很可能是从爬行动物无釉柱结构向哺乳动物真釉柱结构进化过程中的标志.  相似文献   

9.
10.
We report here the structure of cDNA clones encoding axolotl light chains of the lambda type. A single IGLC gene and eight different potential IGLV genes belonging to four different families were detected. The axolotl Cgamma domain has several residues or stretches of residues that are typically conserved in mammalian, avian, and Xenopus Cgamma, but the KATLVCL stretch, which is well conserved in the Cgamma and T-cell receptor Cbeta domains of many vertebrate species, is not well conserved. All axolotl Vgamma sequences closely match several human and Xenopus Vgamma-like sequences and, although the axolotl Cgamma and Vgamma sequences are very like their tetrapod homologues, they are not closely related to nontetrapod L chains. Southern blot experiments suggested the presence of a single IGLC gene and of a limited number of IGLV genes, and analysis of IGLV-J junctions clearly indicated that at least three of the IGLJ segments can associate with IGLV1, IGLV2, or IGLV3 subgroup genes. The overall diversity of the axolotl Vgamma CDR3 junctions seems to be of the same order as that of mammalian Vgamma chains. However, a single IGLV4 segment was found among the 45 cDNAs analyzed. This suggests that the axolotl IGL locus may have a canonical tandem structure, like the mammalian IGK or IGH loci. Immunofluorescence, immunoblotting, and microsequencing experiments strongly suggested that most, if not all L chains are of the gamma type. This may explain in part the poor humoral response of the axolotl.  相似文献   

11.
Molecular Evolution of Vertebrate Goose-Type Lysozyme Genes   总被引:11,自引:0,他引:11  
We have found that mammalian genomes contain two lysozyme g genes. To better understand the function of the lysozyme g genes we have examined the evolution of this small gene family. The lysozyme g gene structure has been largely conserved during vertebrate evolution, except at the 5' end of the gene, which varies in number of exons. The expression pattern of the lysozyme g gene varies between species. The fish lysozyme g sequences, unlike bird and mammalian lysozyme g sequences, do not predict a signal peptide, suggesting that the encoded proteins are not secreted. The fish sequences also do not conserve cysteine residues that generate disulfide bridges in the secreted bird enzymes, supporting the hypothesis that the fish enzymes have an intracellular function. The signal peptide found in bird and mammalian lysozyme g genes may have been acquired as an exon in the ancestor of birds and mammals, or, alternatively, an exon encoding the signal peptide has been lost in fish. Both explanations account for the change in gene structure between fish and tetrapods. The mammalian lysozyme g sequences were found to have evolved at an accelerated rate, and to have not perfectly conserved the known active site catalytic triad of the bird enzymes. This observation suggests that the mammalian enzymes may have altered their biological function, as well.  相似文献   

12.
The glucose-dependent insulinotropic polypeptide (GIP) gene is believed to have originated from a gene duplication event very early in vertebrate evolution that also produced the proglucagon gene, yet so far GIP has only been described within mammals. Here we report the identification of GIP genes in chicken, frogs, and zebrafish. The chicken and frog genes are organized in a similar fashion to mammalian GIP genes and contain 6 exons and 5 introns in homologous locations. These genes can also potentially be proteolytically processed in identical patterns as observed in the mammalian sequences that would yield a GIP hormone that is only one amino shorter than the mammalian sequences due to the removal of an extra basic residue by carboxypeptidase E. The zebrafish GIP gene and precursor protein is shorter than other vertebrate GIP genes and is missing exon 5. The predicted zebrafish GIP hormone is also shorter, being only 31 amino acids in length. The zebrafish GIP hormone is similar in length to the proglucagon-derived peptide hormones, peptides encoded from the gene most closely related to GIP. We suggest that the structure of zebrafish GIP is more similar to the ancestral gene, and that tetrapod GIP has been extended. The mammalian GIP hormone has also undergone a period of rapid sequence evolution early in mammalian evolution. The discovery of a conserved GIP in diverse vertebrate suggests that it has an essential role in physiology in diverse vertebrates, although it may have only recently evolved a role as an incretin hormone.  相似文献   

13.
The dentition of Uromastyx hardwicki was examined in a series of carefully prepared dry skulls and was found to be very different from that of other agamid lizards. The anatomy of the dentition undergoes great changes from the time of hatching to advanced age, but no evidence of tooth replacement could be found. Extension of the tooth rows by addition of larger teeth posteriorly, together with elongation of the premaxilla, and a characteristic pattern of wear are responsible for the condition seen in aged specimens.
The structure of the dental tissues was investigated by means of a variety of histological techniques including scanning electron microscopy and it is established that the enamel has prismatic structure like that of mammalian enamel. The mode of formation of enamel with and without prisms is described and the occurrence and significance of prismatic structure in reptilian dental enamel discussed.  相似文献   

14.
The previously unknown enamel microstructure of a variety of Mesozoic and Paleogene mammals ranging from monotremes and docodonts to therians is described and characterized here. The novel information is used to explore the structural diversity of enamel in early mammals and to explore the impact of the new information for systematics. It is presently unclear whether enamel prisms arose several times during mammalian evolution or arose only once with several reversals to prismless structure. At least two undisputed reversions or simplifications are known—in the monotreme clade from Obdurodon to Ornithorhynchus (via Monotrematum?), and (perhaps more than once) within the clade from archaeocete to a variety of odontocete whales. Similarly, both prismatic and nonprismatic enamel is present among docodonts. Seven discrete characters showing enough morphological diversity to be of potential importance in phylogenetic reconstructions may be identified as a more appropriate summary of enamel microstructural diversity among mammaliaforms than the single character “prismatic enamel-present/absent” employed in recent matrices. Inclusion of five of these characters in the matrix of Luo et al. (2002) modifies the original topology by collapsing several nodes involving triconodonts and other nontribosphenic taxa. There is considerable support for prismatic enamel as a synapomorphy of trithelodonts plus Mammaliamorpha, and multituberculates appear to have small or “normal” sized prisms as the ancestral condition, with some (as yet) enigmatic changes to nonprismatic structure in some basal members of the group and the appearance of “gigantoprismatic” structure as an autapomorphic state of less inclusive clades. Other potential qualitative characters and the need for attaining appropriate methods to incorporate quantitative features may be important for future analyses.  相似文献   

15.
16.
17.
Enamel is the unique and highly mineralized extracellular matrix that covers vertebrate teeth. Amelogenin proteins represent the predominate subfamily of gene products found in developing mammalian enamel, and are implicated in the regulation of the formation of the largest hydroxyapatite crystals in the vertebrate body. Previous attempts to isolate, purify and characterize amelogenins extracted from developing matrix have proven difficult. We now have determined the DNA sequence for a cDNA for the 26-kDa class of murine amelogenin and deduced its corresponding amino acid sequence. The murine amino acid sequence is homologous to bovine or porcine amelogenins extracted from developing enamel matrices. However, an additional 10-residues were found at the carboxy terminus of the murine amelogenin. This is the most complete sequence database for amelogenin peptides and the only DNA sequence for enamel specific genes.  相似文献   

18.
The anisotropic fracturing and differential wear properties of enamel microstructure represent factors that can obscure the predictive relationship between dental microwear and diet. To assess the impact of enamel structure on microwear, this in vitro experimental study examines the relative contributions to wear of three factors: 1) species differences in microstructure, 2) direction of shearing force relative to enamel prisms and crystallites, and 3) size of abrasive particles. Teeth of Lemur, Ovis, Homo, and Crocodylus, representing, respectively, the structural categories of prismatic patterns 1, 2, and 3 and nonprismatic enamel, were abraded by shearing forces (forces having a component directed parallel to abraded surfaces) and examined by scanning electron microscopy. Striation width increased with particle size for nonprismatic, but not for prismatic, specimens. Direction of shear relative to prism and crystallite orientation had a significant influence on striation width in only some prismatic enamels. The different responses of prismatic and nonprismatic enamels to abrasion reflect the influence of structure, but at the level of organization of crystallites rather than prisms per se. Such interactions explain in part the inability of striation width to discriminate among animals with different dietary habits. Heteroscedasticity and deviations from normality also may confound parametric analyses of microwear variables. Variation in crystallite orientation in prismatic enamels may contribute to optimal dental function through the property of differential wear in functionally distinct regions of teeth.  相似文献   

19.
Summary The availability of the amino acid sequence for nine different mammalian P1 family protamines and the revised amino acid sequence of the chicken protamine galline (Oliva and Dixon 1989) reveals a much close relationship between mammalian and avian protamines than was previously thought (Nakano et al. 1976). Dot matrix analysis of all protamine genes for which genomic DNA or cDNA sequence is available reveals both marked sequence similarities in the mammalian protamine gene family and internal repeated sequences in the chicken protamine gene. The detailed alignments of the cis-acting regulatory DNA sequences shows several consensus sequence patterns, particularly the conservation of a cAMP response element (CRE) in all the protamine genes and of the regions flanking the TATA box, CAP site, N-terminal coding region, and polyadenylation signal. In addition we have found a high frequency of the CA dinucleotide immediately adjacent to the CRE element of both the protamine genes and the testis transition proteins, a feature not present in other genes, which suggests the existence of an extended CRE motif involved in the coordinate expression of protamine and transition protein genes during spermatogenesis. Overall these findings suggest the existence of an avian-mammalian P1 protamine gene line and are discussed in the context of different hypotheses for protamine gene evolution and regulation.  相似文献   

20.
It is generally assumed that the different mammalian IgG isotypes have developed during evolution by duplications of a common ancestor gamma heavy chain constant region gene (IGHG). In contrast to other species studied so far, which express between one and four IGHG genes, the horse (Equus caballus) genome contains six IGHG genes, and it has been postulated that they all can be expressed. For determination of the evolutionary history of the six horse IGHG genes, genomic DNA and cDNA of the IGHG genes were sequenced. The structure of these genes with reference to exons and introns was determined. Comparison of the deduced amino acid sequences of the horse IGHG genes revealed the greatest divergences in the hinge regions, and in the proximal CH2 domains. A phylogenetic comparison of the amino acid sequences of the six horse IGHG genes to those of other species shows that the horse IGHG genes form a distinct cluster. This indicates that the mammalian species included in this study probably share only one common ancestor IGHG gene with the horse. The six horse IGHG genes probably then evolved by gene duplication after species separation. In addition, various segmental exchanges were found between the horse IGHG genes, which might be the result of unequal crossing over and/or gene conversion events during the evolution of the six horse IGHG genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号