首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GTPases of the Rho family control a wide variety of cellular processes such as cell morphology, motility, proliferation, differentiation, and apoptosis. We report here the characterization of a new Rho member, which shares 85% and 78% amino acid similarity to TC10 and Cdc42, respectively. This GTPase, termed as TC10-like (TCL) is encoded by an unexpectedly large locus, made of five exons spanning over 85 kilobases on human chromosome 14. TCL mRNA is 2.5 kilobases long and is mainly expressed in heart. In vitro, TCL shows rapid GDP/GTP exchange and displays higher GTP dissociation and hydolysis rates than TC10. Using the yeast two-hybrid system and GST pull-down assays, we show that GTP-bound but not GDP-bound TCL protein directly interacts with Cdc42/Rac interacting binding domains, such as those found in PAK and WASP. Despite its overall similarity to TC10 and Cdc42, the constitutively active TCL mutant displays distinct morphogenic activity in REF-52 fibroblasts, producing large and dynamic F-actin-rich ruffles on the dorsal cell membrane. Interestingly, TCL morphogenic activity is blocked by dominant negative Rac1 and Cdc42 mutants, suggesting a cross-talk between these three Rho GTPases.  相似文献   

2.
3.
4.
After damage, cells reseal their plasma membrane and repair the underlying cortical cytoskeleton. Although many different proteins have been implicated in cell repair, the potential role of specific lipids has not been explored. Here we report that cell damage elicits rapid formation of spatially organized lipid domains around the damage site, with different lipids concentrated in different domains as a result of both de novo synthesis and transport. One of these lipids—diacylglycerol (DAG)—rapidly accumulates in a broad domain that overlaps the zones of active Rho and Cdc42, GTPases that regulate repair of the cortical cytoskeleton. Formation of the DAG domain is required for Cdc42 and Rho activation and healing. Two DAG targets, protein kinase C (PKC) β and η, are recruited to cell wounds and play mutually antagonistic roles in the healing process: PKCβ participates in Rho and Cdc42 activation, whereas PKCη inhibits Rho and Cdc42 activation. The results reveal an unexpected diversity in subcellular lipid domains and the importance of such domains for a basic cellular process.  相似文献   

5.
The Rho family small G-protein Cdc42 has been implicated in a diversity of biological functions. Multiple downstream effectors have been identified. How Cdc42 discriminates the interaction with its multiple downstream effectors is not known. Activated Cdc42-associated tyrosine kinase (ACK) is a very specific effector of Cdc42. To delineate the Cdc42 signaling pathway mediated by ACK, we set about to identify the specific ACK-binding region in Cdc42. We utilized TC10, another member of the Rho family of G-proteins that is 66.7% identical to Cdc42, to construct TC10/Cdc42 chimeras for screening the specific ACK-binding region in Cdc42. A region between switch I and switch II has been identified as the specific ACK-binding (AB) region. The replacement of the AB region with the corresponding region in TC10 resulted in the complete loss of ACK-binding ability but did not affect the binding to WASP, suggesting that the AB region confers the binding specificity to ACK. On the other hand, replacement of the corresponding region of TC10 with the AB region enabled TC10 to acquire ACK-binding ability. Eight residues are different between the AB region and the corresponding region of TC10. The mutational analysis indicated that all eight residues contribute to the binding to ACK2. The assays for the Cdc42-mediated activation of ACK2 indicated that the AB region is essential for Cdc42 to activate ACK2 in cells. Thus, our studies have defined a specific ACK-binding region in Cdc42 and have provided a molecular basis for generating ACK binding-defective mutants of Cdc42 to delineate ACK-mediated signaling pathway.  相似文献   

6.
The Rho family of GTPases plays key roles in the regulation of cell motility and morphogenesis. They also regulate protein kinase cascades, gene expression, and cell cycle progression. This multiplicity of roles requires that the Rho GTPases interact with a wide variety of downstream effector proteins. An understanding of their functions at a molecular level therefore requires the identification of the entire set of such effectors. Towards this end, we performed a two-hybrid screen using the TC10 GTPase as bait and identified a family of putative effector proteins related to MSE55, a murine stromal and epithelial cell protein of 55 kDa. We have named this family the Borg (binder of Rho GTPases) proteins. Complete open reading frames have been obtained for Borg1 through Borg3. We renamed MSE55 as Borg5. Borg1, Borg2, Borg4, and Borg5 bind both TC10 and Cdc42 in a GTP-dependent manner. Surprisingly, Borg3 bound only to Cdc42. An intact CRIB (Cdc42, Rac interactive binding) domain was required for binding. No interaction of the Borgs with Rac1 or RhoA was detectable. Three-hemagglutinin epitope (HA(3))-tagged Borg3 protein was mostly cytosolic when expressed ectopically in NIH 3T3 cells, with some accumulation in membrane ruffles. The phenotype induced by Borg3 was reminiscent of that caused by an inhibition of Rho function and was reversed by overexpression of Rho. Surprisingly, it was independent of the ability to bind Cdc42. Borg3 also inhibited Jun kinase activity by a mechanism that was independent of Cdc42 binding. HA(3)-Borg3 expression caused substantial delays in the spreading of cells on fibronectin surfaces after replating, and the spread cells lacked stress fibers. We propose that the Borg proteins function as negative regulators of Rho GTPase signaling.  相似文献   

7.
8.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

9.
10.
The Rho family of GTP-binding proteins plays a critical role in a variety of cellular processes, including cytoskeletal reorganization and activation of kinases such as p38 and C-jun N-terminal kinase (JNK) MAPKs. We report here that dominant negative forms of Rac1 and Cdc42Hs inhibit the expression of the muscle-specific genes myogenin, troponin T, and myosin heavy chain in L6 and C2 myoblasts. Such inhibition correlates with decreased p38 activity. Active RhoA, RhoG, Rac1, and Cdc42Hs also prevent myoblast-to-myotube transition but affect distinct stages: RhoG, Rac1, and Cdc42Hs inhibit the expression of all muscle-specific genes analyzed, whereas active RhoA potentiates their expression but prevents the myoblast fusion process. We further show by two different approaches that the inhibitory effects of active Rac1 and Cdc42Hs are independent of their morphogenic activities. Rather, myogenesis inhibition is mediated by the JNK pathway, which also leads to a cytoplasmic redistribution of Myf5. We propose that although Rho proteins are required for the commitment of myogenesis, they differentially influence this process, positively for RhoA and Rac1/Cdc42Hs through the activation of the SRF and p38 pathways, respectively, and negatively for Rac1/Cdc42Hs through the activation of the JNK pathway.  相似文献   

11.
Smith WJ  Hamel B  Yohe ME  Sondek J  Cerione RA  Snyder JT 《Biochemistry》2005,44(40):13282-13290
The Rho family GTPase Cdc42 functions as a molecular switch and controls many fundamental cellular processes such as cytoskeletal regulation, cell polarity, and vesicular trafficking. Guanine nucleotide exchange factors of the Dbl family activate Cdc42 and other Rho GTPases by catalyzing the removal of bound GDP, allowing for GTP loading, and subsequent effector recognition ultimately leading to downstream signaling events. Analysis of existing structural data reveals that the Dbl exchange factor intersectin engages a strictly conserved GTPase residue of Cdc42 (tyrosine 32) in a unique mode with respect to all other visualized exchange factor-Rho GTPase interfaces. To investigate this differential binding architecture, we analyzed the role of tyrosine 32 of Cdc42 in binding, and stimulation by Dbl family exchange factors. Deletion of the hydroxyl side chain of tyrosine 32 substantially increases the affinity of Cdc42 for intersectin, yet severely cripples interaction with Dbs, a normally potent exchange factor of Cdc42. Moreover, Cdc42(Y32F) is exclusively activated by intersectin, while virtually unresponsive to other Cdc42-activating exchange factors in vitro and in vivo. Further, the structural determinants unique to intersectin, which permit selective recognition and concomitant stimulation of Cdc42(Y32F), have been defined. Cdc42 and other individual Rho GTPases receive input stimulatory signals from a multitude of Dbl exchange factors, and therefore, Cdc42(Y32F) could act as a valuable reagent for understanding the specific influence of ITSN on Cdc42-mediated signaling phenomena.  相似文献   

12.
Cdc42 homologous protein (Chp) is a member of the Rho family of small GTPases and shares significant sequence and functional similarity with Cdc42. However, unlike classical Rho GTPases, we recently found that Chp depends on palmitoylation, rather than prenylation, for association with cellular membranes. Because palmitoylation alone is typically not sufficient to promote membrane association, we evaluated the possibility that other carboxy-terminal residues facilitate Chp subcellular association with membranes. We found that Chp membrane association and transforming activity was dependent on the integrity of a stretch of basic amino acids in the carboxy terminus of Chp and that the basic amino acids were not simply part of a palmitoyl acyltransferase recognition motif. We also determined that the 11 carboxy-terminal residues alone were sufficient to promote Chp plasma and endomembrane association. Interestingly, stimulation with tumor necrosis factor-alpha activated only endomembrane-associated Chp. Finally, we found that Chp membrane association was not disrupted by Rho guanine nucleotide dissociation inhibitory proteins, which are negative regulators of Cdc42 membrane association and biological activity. In summary, the unique carboxy-terminal sequence elements that promote Chp subcellular location and function expand the complexity of mechanisms by which the cellular functions of Rho GTPases are regulated.  相似文献   

13.
The Rho GTPases have mainly been studied in association with their roles in the regulation of actin filament organization. These studies have shown that the Rho GTPases are essential for basic cellular processes, such as cell migration, contraction, and division. In this paper, we report that RhoD has a role in the organization of actin dynamics that is distinct from the roles of the better-studied Rho members Cdc42, RhoA, and Rac1. We found that RhoD binds the actin nucleation–promoting factor WASp homologue associated with actin Golgi membranes and microtubules (WHAMM), as well as the related filamin A–binding protein FILIP1. Of these two RhoD-binding proteins, WHAMM was found to bind to the Arp2/3 complex, while FILIP1 bound filamin A. WHAMM was found to act downstream of RhoD in regulating cytoskeletal dynamics. In addition, cells treated with small interfering RNAs for RhoD and WHAMM showed increased cell attachment and decreased cell migration. These major effects on cytoskeletal dynamics indicate that RhoD and its effectors control vital cytoskeleton-driven cellular processes. In agreement with this notion, our data suggest that RhoD coordinates Arp2/3-dependent and FLNa-dependent mechanisms to control the actin filament system, cell adhesion, and cell migration.  相似文献   

14.
In eucaryotic cells, the delivery of a secreted protein to the plasma membrane via vesicles must include transport, recognition, and fusion events. Proteins exposed on the cytoplasmic face of the secretory vesicles play a role in these events; these include the GTP-binding proteins, which are crucial components in this process. Fractions enriched with vesicles carrying glucose oxidase (GOX) activity from Fusarium oxysporum f. sp. lycopersici, a soilborne fungal pathogen causing vascular wilt on tomato plants, were obtained using two successive sucrose gradients, the first a linear-log and the second an isopycnic gradient. In this study, we used the following Fusarium strains: a wild-type and a strain carrying a Δrho1 loss-of-function mutation (presenting dramatically reduced virulence). By ADP-ribosylation with C3 exotoxin, and Western blot analysis with specific antibodies, we identified the small GTPases Rho1, Rho4, Cdc42 and Rab8, and a heterotrimeric Gα protein associated with vesicles carrying GOX activity. This was done for both strains, with the exception of Rho1, which was absent in the mutant strain; in addition, the levels of the Cdc42 protein were observed to be higher in the Δrho1 strain. These data indicate that three Rho proteins, Rho1, Rho4, and Cdc42, are present in secretory vesicles carrying GOX activity in F. oxysporum, and that Rho1 is not essential for the transport and secretion of, at least, cargo proteins carried in secretory vesicles, or Cdc42/Rho4 can fulfill its role in these events.  相似文献   

15.
16.
The type 3 secretion system (T3SS) is a powerful bacterial nanomachine that is able to modify the host cellular immune defense in favor of the pathogen by injection of effector proteins. In this regard, cellular Rho GTPases such as Rac1, RhoA or Cdc42 are targeted by a large group of T3SS effectors by mimicking cellular guanine exchange factors or GTPase-activating proteins. However, functional analysis of one type of T3SS effector that is translocated by bacterial pathogens is challenging because the T3SS effector repertoire can comprise a large number of proteins with redundant or interfering functions. Therefore, we developed the Yersinia toolbox to either analyze singular effector proteins of Yersinia spp. or different bacterial species in the context of bacterial T3SS injection into cells. Here, we focus on the WxxxE guanine exchange factor mimetic proteins IpgB1, IpgB2 and Map, which activate Rac1, RhoA or Cdc42, respectively, as well as the Rho GTPase inactivators YopE (a GTPase-activating mimetic protein) and YopT (cysteine protease), to generate a toolbox module for Rho GTPase manipulation.  相似文献   

17.
Members of the Rho subfamily of GTP-binding proteins regulate phospholipase D1 (PLD1) activity and signaling. In previous work, we demonstrated that binding of the Rho family member Cdc42 to PLD1 and the subsequent stimulation of its enzymatic activity are distinct events. Deletion of the insert helix from Cdc42 does not interfere with its switch I-mediated, GTP-dependent binding to PLD1 but inhibits Cdc42-stimulated PLD1 activity. To understand the mechanism of the insert-mediated activation of PLD1 by Cdc42 and to develop reagents to study Cdc42-activated PLD1 in cellular signaling events, we have undertaken a mutational analysis of the Rho insert region of Cdc42 and examined the specificity of the insert helix requirement in the other Rho family members, RhoA and Rac1. Here, we identify a critical residue, serine 124, in the Cdc42 insert helix central to its activation mechanism. Further, we examine this activation mechanism with respect to other members of the Rho family and demonstrate that each Rho protein activates PLD by distinct mechanisms, potentially allowing for unique signaling outcomes in the cell.  相似文献   

18.
19.
Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI)alpha. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDI alpha in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDI alpha. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDI alpha binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDI alpha and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic.  相似文献   

20.
Rho family G proteins, including Rac and Cdc42, regulate a variety of cellular functions such as morphology, motility, and gene expression. We developed fluorescent resonance energy transfer-based probes which monitored the local balance between the activities of guanine nucleotide exchange factors and GTPase-activating proteins for Rac1 and Cdc42 at the membrane. These probes, named Raichu-Rac and Raichu-Cdc42, consisted of a Cdc42- and Rac-binding domain of Pak, Rac1 or Cdc42, a pair of green fluorescent protein mutants, and a CAAX box of Ki-Ras. With these probes, we video imaged the Rac and Cdc42 activities. In motile HT1080 cells, activities of both Rac and Cdc42 gradually increased toward the leading edge and decreased rapidly when cells changed direction. Under a higher magnification, we observed that Rac activity was highest immediately behind the leading edge, whereas Cdc42 activity was most prominent at the tip of the leading edge. Raichu-Rac and Raichu-Cdc42 were also applied to a rapid and simple assay for the analysis of putative guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in living cells. Among six putative GEFs and GAPs, we identified KIAA0362/DBS as a GEF for Rac and Cdc42, KIAA1256 as a GEF for Cdc42, KIAA0053 as a GAP for Rac and Cdc42, and KIAA1204 as a GAP for Cdc42. In conclusion, use of these single-molecule probes to determine Rac and Cdc42 activity will accelerate the analysis of the spatiotemporal regulation of Rac and Cdc42 in a living cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号