首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The nucleotide sequence of the mRNA encoding the glycoprotein from the New Jersey serotype of vesicular stomatitis virus (VSV) was determined from a cDNA clone containing the entire coding region. The sequence of 12 5'-terminal noncoding nucleotides present in the mRNA but not in the cDNA clone was determined from a primer extended to the 5' terminus of the mRNA. The mRNA is 1,573 nucleotides long (excluding polyadenylic acid) and encodes a protein of 517 amino acids. Only six nucleotides occur between the translation termination codon and the polyadenylic acid. Short homologies between the untranslated termini of this mRNA and the mRNAs of the Indiana serotype were found. The predicted protein sequence was compared with that of the glycoprotein of the Indiana serotype of VSV and with the glycoprotein of rabies virus, using a computer program which determines optimal alignment. An amino acid identity of 50.9% was found for the two VSV serotypes. Approximately 20% identity was found between the rabies virus and VSV New Jersey glycoproteins. The positions and sizes of the transmembrane domains, the signal sequences, and the glycosylation sites are identical in both VSV serotypes. Two of five serine residues which were possible esterification sites for palmitate in the glycoprotein from the Indiana serotype are changed to glycine residues in the glycoprotein from the New Jersey serotype. Because the glycoprotein of the New Jersey serotype does not contain esterified palmitate, we suggest that one or both of these residues are the probable esterification sites in the glycoprotein from the Indiana serotype.  相似文献   

2.
Nucleotide sequences of around 200 residues were determined adjacent to the 3' terminus of the genome RNA of vesicular stomatitis virus, New Jersey serotype, and adjacent to the 3'-terminal polyadenylic acid tract of the N protein mRNA of the same virus. These sequences were compared with the corresponding sequences previously determined for the Indiana serotype of vesicular stomatitis virus. The sequences obtained for the two strains were readily aligned, showing 70.8% homology overall. Examination of the sequences allowed identification of the translation initiation and termination codons for the N mRNA of each serotype. The deduced N-terminal and C-terminal amino acid sequences of the two N polypeptides were each similar, and most of the differences between them consisted of substitution by a clearly homologous amino acid. It was proposed that these nucleotide sequences, within limits imposed by their functions, comprise reasonably representative measures of the extent of sequence homology between the genomes of the two serotypes, and that this is higher than previously estimated, but with little exact homology over extended regions.  相似文献   

3.
The amino acid sequence of the matrix protein of the human respiratory syncytial virus (RS virus) was deduced from the sequence of a cDNA insert in a recombinant plasmid harboring an almost full-length copy of this gene. It specifically hybridized to a single 1,050-base mRNA from infected cells. The recombinant containing 944 base pairs of RS viral matrix protein gene sequence lacked five nucleotides corresponding to the 5' end of the mRNA. The nucleotide sequence of the 5' end of the mRNA was determined by the dideoxy sequencing method and found to be 5' NGGGC, wherein the C residue is one nucleotide upstream of the cloned viral sequence. The initiator ATG codon for the matrix protein is embedded in an AATATGG sequence similar to the canonical PXXATGG sequence present around functional eucaryotic translation initiation codons. There is no conserved sequence upstream of the polyadenylate tail, unlike vesicular stomatitis virus and Sendai virus, in which four nucleotides upstream of the polyadenylate tail are conserved in all genes. There is no equivalent of the eucaryotic polyadenylation signal AAUAAA upstream of the polyadenylate tail. The matrix protein of 28,717 daltons has 256 amino acids. It is relatively basic and moderately hydrophobic. There are two clusters of hydrophobic amino acid residues in the C-terminal third of the protein that could potentially interact with the membrane components of the infected cell. The matrix protein has no homology with the matrix proteins of other negative-strand RNA viruses, implying that RS virus has undergone extensive evolutionary divergence. A second open reading frame potentially encoding a protein of 75 amino acids and partially overlapping the C terminus of the matrix protein was also identified.  相似文献   

4.
The complete nucleotide sequences of the vesicular stomatitis virus mRNA's encoding the glycoprotein (G) and the matrix protein (M) have been determined from cDNA clones that contain the complete coding sequences from each mRNA. The G protein mRNA is 1,665 nucleotides long, excluding polyadenylic acid, and encodes a protein of 511 amino acids including a signal peptide of 16 amino acids. G protein contains two large hydrophobic domains, one in the signal peptide and the other in the transmembrane segment near the COOH terminus. Two sites of glycosylation are predicted at amino acid residues 178 and 335. The close correspondence of the positions of these sites with the reported timing of the addition of the two oligosaccharides during synthesis of G suggests that glycosylation occurs as soon as the appropriate asparagine residues traverse the membrane of the rough endoplasmic reticulum. The mRNA encoding the vesicular stomatitis virus M protein is 831 nucleotides long, excluding polyadenylic acid, and encodes a protein of 229 amino acids. The predicted M protein sequence does not contain any long hydrophobic or nonpolar domains that might promote membrane association. The protein is rich in basic amino acids and contains a highly basic amino terminal domain. Details of construction of the nearly full-length cDNA clones are presented.  相似文献   

5.
D Chattopadhyay  A K Banerjee 《Cell》1987,49(3):407-414
We have investigated the functional significance of phosphoserine residues that lie in the L protein-binding domain between amino acids 213 and 247 of the phosphoprotein (NS) of vesicular stomatitis virus. A series of mutant NS proteins were made by cell-free translation of mRNAs transcribed from the cloned gene. Site-directed substitution of alanine for both serine 236 and serine 242 essentially abolished RNA synthesis catalyzed by the NS-L complex. Substitution of either of these serines reduced RNA synthesis by 75%. Serine 218 played no major role in RNA synthesis. Phosphorylation of NS by the L protein was abrogated by substitution of either serine 236 or serine 242. These results indicate that phosphorylation of serines 236 and 242 in the NS protein regulates its binding with the L protein and the N-RNA template and is essential for activation of viral RNA synthesis.  相似文献   

6.
The nucleotide sequence of the mRNA encoding the glycoprotein of infectious hematopoietic necrosis virus was determined from a cDNA clone containing the entire coding region. The G-protein cDNA is 1,609 nucleotides long (excluding the polyadenylic acid) and encodes a protein of 508 amino acids. The predicted amino acid sequence was compared with that of the glycoprotein of the Indiana and New Jersey serotypes of vesicular stomatitis virus and with the glycoprotein of rabies virus, using a computer program which determined optimal alignment. An amino acid identity of approximately 20% was found between infectious hematopoietic necrosis virus and the two vesicular stomatitis virus serotypes and between infectious hematopoietic necrosis virus and rabies virus. The positions and sizes of the signal sequence and transmembrane domain and the possible glycosylation sites were determined.  相似文献   

7.
The entire phosphoprotein (P) and nucleocapsid (N) protein gene sequences and deduced amino acid sequences for 18 selected vesicular stomatitis virus isolates representative of the natural genetic diversity within the New Jersey serotype are reported. Phylogenetic analysis of the data using maximum parsimony allowed construction of evolutionary trees for the individual genes and the combined N, P, and glycoprotein (G) genes of these viruses. Virtually identical rates of nucleotide substitutions were found for each gene, indicating that evolution of these genes occurs at essentially the same rate. Although up to 19 and 17% sequence differences were evident in the P and N genes, respectively, no variation in gene length or evidence of recombinational rearrangements was found. However, striking evolutionary differences were observed among the amino acid sequences of vesicular stomatitis virus New Jersey N, P, and G proteins. The N protein amino acid sequence was the most highly conserved among the different isolates, indicating strong functional and structural constraints. Conversely, the P protein amino acid sequences were highly variable, indicating considerably fewer constraints or greater evolutionary pressure on the P protein. Much of the remarkable amino acid variability of the P protein resided in a hypervariable domain located between amino acids 153 and 205. The variability within this region would be consistent with it playing a structural role as a spacer to maintain correct conformational presentation of the separate active domains of this multifunctional protein. In marked contrast, the adjacent domain I of the P protein (previously thought to be under little evolutionary constraint) contained a highly conserved region. The colocalization of a short, potentially functional overlapping open reading frame to this region may explain this apparent anomaly.  相似文献   

8.
The in vitro RNA synthesis by the virion-associated RNA polymerase of vesicular stomatitis virus (VSV), New Jersey serotype, was compared with that of the serologically distinct Indiana serotype of VSV. The New Jersey serotype of VSV synthesized five distinct mRNA species in vitro, three of which were smaller than the corresponding species synthesized by the Indiana serotype of VSV. These included the mRNA's coding for the G, M, and NS proteins. By hybridization experiments, virtually no sequence homology was detected between the mRNA's of the two serotypes. Despite this lack of overall homology, the 12 to 18S mRNA species of both serotype contained a common 5'-terminal hexanucleotide sequence, G(5')ppp(5')A-A-C-A-G. The signicance of this finding in light of specific interactions between the two serotypes of VSV in vivo is discussed.  相似文献   

9.
The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate [HPI])-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1,036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and Mr estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%) of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.  相似文献   

10.
The complete nucleotide sequences of the vesicular stomatitis virus (VSV) mRNA's encoding the N and NS proteins have been determined from the sequences of cDNA clones. The mRNA encoding the N protein is 1,326 nucleotides long, excluding polyadenylic acid. It contains an open reading frame for translation which extends from the 5'-proximal AUG codon to encode a protein of 422 amino acids. The N and mRNA is known to contain a major ribosome binding site at the 5'-proximal AUG codon and two other minor ribosome binding sites. These secondary sites have been located unambiguously at the second and third AUG codons in the N mRNA sequence. Translational initiation at these sites, if it in fact occurs, would result in synthesis of two small proteins in a second reading frame. The VSV and mrna encoding the NS protein is 815 nucleotides long, excluding polyadenylic acid, and encodes a protein of 222 amino acids. The predicted molecular weight of the NS protein (25,110) is approximately one-half of that predicted from the mobility of NS protein on sodium dodecyl sulfate-polyacrylamide gels. Deficiency of sodium dodecyl sulfate binding to a large negatively charged domain in the NS protein could explain this anomalous electrophoretic mobility.  相似文献   

11.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

12.
13.
The nucleotide sequence of a recombinant DNA clone, containing a partial mRNA sequence for human α-fetoprotein (AFP) in the plasmid vector pBR322, has been determined. Two regions of the cloned nucleotide sequence were found to agree with published amino acid sequences of two cyanogen bromide peptides derived from human AFP. Examination of the amino acid sequence, deduced from the cloned portion of the mRNA coding region, reveals extensive homology with the third domain of the human serum albumin molecule. A total of 44% ( ) amino acids and 54% ( ) nucleotides are identical in the two structures. The landmark cysteine residues are found in the same positions in both polypeptide chains, presumably forming the same disulfide bridges in AFP as those found in the albumin. The sequence homology reinforces the evidence that human AFP and albumin constitute a gene family, in analogy to the same family found in rodents. A comparison of the human and rodent sequence data suggests that the rate of molecular evolution has been faster for AFP than for albumin.  相似文献   

14.
15.
We propose a reclassification of five strains of the New Jersey serotype of vesicular stomatitis virus into two subtypes designated Concan and Hazelhurst. This subclassification into two subtypes is based on reciprocal differences in antibody neutralization of virion infectivity, nucleotide base sequence homology, oligonucleotide maps of virion RNA, and interference by defective-interfering particles.  相似文献   

16.
The phosphoprotein NS of vesicular stomatitis virus which accumulates within the infected cell cytoplasm is phosphorylated at multiple serine and threonine residues (G. M. Clinton and A. S. Huang, Virology 108:510-514, 1981; Hsu et al., J. Virol. 43:104-112, 1982). Using incomplete chemical cleavage at tryptophan residues, we mapped the major phosphorylation sites to the amino-terminal half of the protein. Analysis of phosphate-labeled tryptic peptides suggests that essentially all of the label is within the large trypsin-resistant fragment predicted from the sequence of Gallione et al. (J. Virol. 39:52-529, 1981). A similar result has been obtained for NS protein isolated from the virus particle by C.-H. Hsu and D. W. Kingsbury (J. Biol. Chem., in press). Analysis of phosphodipeptides utilizing the procedures of C. E. Jones and M. O. J. Olson (Int. J. Pept. Protein Res. 16:135-142, 1980) enabled us to detect as many as six distinct phosphate-containing dipeptides. From these studies, together with the known sequence data, we conclude that the major phosphate residues on cytoplasmic NS protein are located in the amino third of the NS molecule and most probably between residues 35 and 106, inclusive. The studies also provide formal chemical proof that NS protein has a structure consistent with a monomer of the sequence of Gallione et al. as modified by J. K. Rose (personal communication). The low electrophoretic mobility of this protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is not therefore due to dimerization.  相似文献   

17.
从猪水泡病病毒(SVDV)细胞培养物的PEG浓缩毒中提取病毒RNA,经RT-PCR和套式PCR扩增病毒主要保护性抗原蛋白基因,将扩增产物1.6kb插入pUC18载体中,经亚克隆后用双脱氧链终止法测定其序列,与已发表的SVDV分离物该区序列作比较,核苷酸同源性为96%-97%,氨基酸同源性为98%,参与构成SVDV中和性抗原位点的几个氨基酸残基均很保守;与已发表的柯萨奇B5病毒的对应序列比较,两者核苷酸序列同源性为77%,而推导的氨基酸顺序同源性竞高达92%。本文结果有助于SVDV的分子流行病学研究,并为其和柯萨奇B5病毒的相互关系提供参考数据,为SVDV新型疫苗研究提供了基础材料  相似文献   

18.
The complete nucleotide sequence of the gene encoding an alkaline serine proteinase (aprP) of Bacillus pumilus TYO-67 was determined. The sequence analysis showed an open reading frame of 1,149 bp (383 amino acids) that encoded a signal peptide consisting of 29 residues and a propeptide of 79 residues. The deduced 3 amino acid residues, D32, H64, and S221, were identical with 3 essential amino acids in the catalytic center of subtilases. The sequence around these residues revealed that APRP was a new member of the true subtilisin subgroup of the subtilisin family. The highest homology was found in subtilisin NAT at 64.4% in the DNA sequence. The residue S189 of APRP was different from those of other subtilases.  相似文献   

19.
We compared the predicted amino acid sequences of the vesicular stomatitis virus and rabies virus glycoproteins by using a computer program which provides an optimal alignment and a statistical significance for the match. Highly significant homology between these two proteins was detected, including identical positioning of one glycosylation site. A significant homology between the predicted amino acid sequences of vesicular stomatitis virus and influenza virus matrix proteins was also found.  相似文献   

20.
Sequence homology within the morbilliviruses.   总被引:18,自引:9,他引:9       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号