首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To more effectively control two major cotton insects (cotton bollworm and Spodoptera litura) and improve the efficacy of the pest resistance management, novel transgenic plants expressing Bacillus thuringiensis Cry9C gene were generated, and gene stacking strategy was incorporated. Initially, a binary plasmid vector harboring Cry9C gene was introduced into an elite cotton cultivar Simian-3 by Agrobacterium-mediated transformation. Integration and expression of the Cry9C genes in three transgenic lines were confirmed by PCR and RT-PCR. Among these transgenic lines, T0 generation of line 16 (L-16) with normal phenotypes were selected by ELISA assays for its highest expression level of Cry9C. In T1 population of L-16, the expression level of Cry9C ranged from 29 to 45 μg/g fresh leaf. The following insect bioassays demonstrated that transgenic S3-35S::Cry9C cotton plants exhibited moderate toxicity to Heliothis armigera but strong toxicity to S. litura compared with the transgenic plants expressing Cry 1Ac gene. For incorporation of gene staking strategy, Cry9C gene and Cry 2A or Cry 1Ac were pyramided, respectively by sexual crossing. The expression of Cry9C protein in all F1 progenies had a similar level as the parent plants indicating the high heritability of Bt genes in transgenic progenies. Progenies from both Cry9C × Cry 2A and Cry9C × Cry 1Ac exhibited higher resistance to S. litura compared with their parents. Together our data demonstrated that our newly generated transgenic plants represent a reservoir of novel insect-resistant materials in cotton breeding, and the successful incorporation of gene pyramiding technology can provide a new solution of developing multiple resistance management strategies.  相似文献   

2.
The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.  相似文献   

3.
STAT3 pathway plays an important role in the growth of diffuse large B-cell lymphoma (DLBCL) cells. Here we investigated the antitumor activity of Quercetin, a flavonoid compound, in combination with rituximab in DLBCL cell lines in vitro. We found that Quercetin synergistically enhanced rituximab-induced growth inhibition and apoptosis in DLBCL cell lines. Moreover, we found Quercetin exerted inhibitory activity against STAT3 pathway and downregulated the expression of survival genes. These results suggest that combining the Quercetin with rituximab may present an attractive and potentially effective way for the treatment of DLBCL.  相似文献   

4.
MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.  相似文献   

5.

Background and aims

Paenibacillus spp. are widely considered to impact the fertility and health of soil. The aim of this study was to evaluate how different fertilization regimes affect the population size and community structure of Paenibacillus spp. over a long period of time in red soil.

Methods

Soil samples were collected from a long-term experiment and were then analyzed using real-time PCR and PCR-DGGE. The correlation analysis, PCA and RDA were used to explore the relationships among Paenibacillus spp. population, community structure and soil properties in different treatments.

Results

The pH was seriously decreased only by the application of chemical fertilizer. The largest population of Paenibacillus spp. was found in the soil treated with organic fertilizer application, while the richest diversity was observed in the soil treated only with the chemical fertilizer. The Paenibacillus spp., Paenibacillus alkaliterrae, Paenibacillus campinasensis, and Paenibacillus xylanilyticus were found in all treatments. Paenibacillus castaneae was found in the soil treated with NPK, and Paenibacillus pabuli was specifically observed in the lime-amended treatment. Paenibacillus taichungensis and Paenibacillus prosopidis were detected in the soil treated with only chemical fertilizer. Except for the ammonium and pH, all the tested soil fertility parameters (total C, total N, nitrate, available K and available P) could significantly affect both the Paenibacillus spp. population number and diversity. The soil pH was significantly correlated with Paenibacillus spp. diversity only.

Conclusions

Our results indicate that the different long-term fertilization regimes have varied impact on both the Paenibacillus spp. population size and the diversity of the community associated with the soil properties tested. These results can help to enrich the information on the response of beneficial soil microbes to different long-term fertilization regimes.  相似文献   

6.
As the world races towards a plant-based bioeconomy, plants known to be ideal and economical bioreactors are being harnessed for the production of recombinant proteins. The major immunodominant 10 kDa GroES TB antigen (Chaperonin 10) gene from Mycobacterium tuberculosis was selected for expression in plants as a putative tuberculosis (TB) subunit vaccine candidate. Two crops, tobacco and potato, were engineered by stable plant transformation for expression of the 10 kDa GroES TB antigen using non-viral binary vectors. The integration of the GroES TB gene into the genomes of tobacco and potato was confirmed by PCR and Southern blotting. The expression of the GroES TB antigen in tobacco was 0.04–1.2 % of the total soluble protein (TSP). However, the expression of the same TB antigen in the Indian potato cv. Kufri bahar was comparatively low (0.033 % of TSP). The recombinant GroES plant derived protein was characterised and confirmed by MALDI-TOF–TOF and ELISA. This is the first report of the expression of the 10 kDa chaperonin in tobacco and potato.  相似文献   

7.
8.
9.
10.
Temozolomide (TMZ) is an alkylating agent that is widely used in chemotherapy for cancer. A key mechanism of resistance to TMZ is the overexpression of O6-methylguanine-DNA methyltransferase (MGMT). MGMT specifically repairs the DNA O6-methylation damage induced by TMZ and irreversibly inactivates TMZ. Regulation of MGMT expression and research regarding the mechanism of TMZ resistance will help rationalize the clinical use of TMZ. In this review, we provide an overview of recent advances in the field, with particular emphasis on MGMT structure, function, expression regulation, and the association between MGMT and resistance to TMZ.  相似文献   

11.
Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44), which catalyzes the reduction of cinnamoyl-CoA esters to their respective cinnamaldehydes, is considered as a key enzyme in lignin formation. The substrates of CCR, cinnamoyl-CoA esters, are products of 4-Coumarate-CoA ligase (4CL, EC 6.2.1.12), which is an enzyme upstream of CCR. The PtCCR and Pt4CL were isolated from Populus tomentosa and expressed in E. coli. Results showed that 4CL can catalyze the conversion of hydroxycinnamic acids to cinnamoyl-CoA esters, with high efficiency. The purification of esters using SPE cartridges suggested that 40 % methanol with 0.1 M of acetic acid was the optimal elution buffer for cinnamoyl-CoA esters. The optimization of prokaryotic expression demonstrated that the best expression conditions for recombinant PtCCR was 6 h of 0.4 mM IPTG induction at 37 °C. PtCCR enzyme assay illustrated that the recombinant protein can catalyze the reduction of cinnamoyl-CoA esters. Kinetics analysis showed that feruloyl-CoA has higher affinity to PtCCR with faster reaction speed (Vmax), indicating that feruloyl-CoA was the most favorable substrate for PtCCR catalysis. The recombinant protein was expressed in E. coli, purified through affinity column chromatography, and characterized by SDS-PAGE. SPE cartridges were used to purify the ester products of the Pt4CL reaction. HPLC-MS was used to analyze the structure of esters and evaluate their purity or quantity. Furthermore, the enzyme activity of recombinant CCR to feruloyl-CoA at different pHs indicated that compartmentalization may be an important factor in lignin monomer formation.  相似文献   

12.
Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors. The aim of this study was to investigate the biology characteristics of ESCC by analyzing microRNA and mRNA expression profile. We used BRB-array tools to analyze the deregulated microRNA and mRNA between esophageal squamous cell carcinomas and paired normal adjacent tissues. We used miRTrail and protein–protein interaction methods to explore the related pathways and networks of deregulated microRNA and mRNA. By combining the results of pathways and networks, we found that the deregulated microRNA and their deregulated target mRNA are enriched in the following pathways: DNA replication, cell cycle, ECM-receptor interaction, focal adhesion, mismatch repair, and pathways in cancer. The results showed that many deregulated microRNAs and mRNAs may play a vital role in the pathogenesis of ESCC, and the systems biology approach is very helpful to explore molecular mechanism of ESCC.  相似文献   

13.
14.
The need for glioma biomarkers with improved sensitivity and specificity has sparked research into short non-coding RNA known as microRNA (miRNA). Altered miRNA biogenesis and expression in glioma plays a vital role in important signaling pathways associated with a range of tumor characteristics including gliomagenesis, invasion, and malignancy. This review will discuss current research into the role of miRNA in glioma and altered miRNA expression in biofluids as candidate biomarkers with a particular focus on glioblastoma, the most malignant form of glioma. The isolation and characterization of miRNA using cellular and molecular biology techniques from the circulation of glioma patients could potentially be used for improved diagnosis, prognosis, and treatment decisions. We aim to highlight the links between research into miRNA function, their use as biomarkers, and how these biomarkers can be used to predict response to therapy. Furthermore, increased understanding of miRNA in glioma biology through biomarker research has led to the development of miRNA therapeutics which could restore normal miRNA expression and function and improve the prognosis of glioma patients. A panel of important miRNA biomarkers for glioma in various biofluids discovered to date has been summarized here. There is still a need, however, to standardize techniques for biomarker characterization to bring us closer to clinically relevant miRNA-based diagnostic and therapeutic signatures. A clinically validated biomarker panel has potential to improve time to diagnosis, predicting response to treatment and ultimately the prognosis of glioma patients.  相似文献   

15.
Suppression of the activity of pro-apoptotic Bcl-2-family proteins frequently confers chemoresistance to many human cancer cells. Using subcellular fractionation, the ER calcium (Ca++) channel inhibitor dantrolene and small interfering RNA (siRNA) against Bax or Bak, we show that the new synthetic bichalcone analog TSWU-CD4 induces apoptosis in human cancer cells by releasing endoplasmic reticulum (ER)-stored Ca++ through ER/mitochondrial oligomerization of Bax/Bak. Blockade of the protein kinase RNA-like ER kinase or the unfolded protein response regulator glucose-regulated protein 78 expression by siRNA not only suppressed oligomeric Bax/Bak-mediated pro-caspase-12 cleavage and apoptosis but also resulted in an inhibition of Bcl-2 downregulation induced by TSWU-CD4. Induction of the ER oligomerization of Bax/Bak and apoptosis by TSWU-CD4 were suppressed by Bcl-2 overexpression. Inhibition of lipid raft-associated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling by TSWU-CD4 induced ER stress- and oligomeric Bax/Bak-mediated apoptosis, which were substantially reversed by overexpression of the wt PI3K p85α subunit. Taken together, these results suggest that suppression of lipid raft-associated PI3K/Akt signaling is required for the ER stress-mediated apoptotic activity of Bax/Bak, which is responsible for the ability of TSWU-CD4-treated cancer cells to exit the ER-mitochondrial apoptotic cell death pathway.  相似文献   

16.
In this study, we investigated the expression of the pathway, SRF–microRNA-1/microRNA-133a–Hand2, in the Wistar rat embryonic ventricular cardiomyocytes under conventional monolayer culture. The morphological observation of the cultured cardiomyocytes and the mRNA expression levels of three vital constituent proteins, MLC-2v, N-cadherin, and connexin43, demonstrated the immaturity of these cultured cells, which was featured by less myofibril density, immature sarcomeric structure, and significantly lower mRNA expression of the three constituent proteins than those in neonatal ventricular samples. More importantly, results in this study suggest that the change of SRF–microRNA-1/microRNA-133a–Hand2 pathway results into the attenuation of the Hand2 repression in cultured cardiomyocytes. These outcomes are valuable to understand the cellular state as embryonic cardiomyocytes to be in vitro model and might be useful for the assessment of engineered cardiac tissue and cardiac differentiation of stem cells.  相似文献   

17.
18.
Receptors for advanced glycation end-products (RAGE) are members of the immunoglobulin superfamily of cell-surface receptors implicated in mechanisms of pulmonary inflammation. In the current study, we test the hypothesis that RAGE mediates inflammation in primary alveolar macrophages (AMs) exposed to diesel particulate matter (DPM). Quantitative RT-PCR and immunoblotting revealed that RAGE was up-regulated in Raw264.7 cells, an immortalized murine macrophage cell line and primary AMs exposed to DPM for 2 h. Because DPM increased RAGE expression, we exposed Raw264.7 cells and primary AMs isolated from RAGE null and wild-type (WT) mice to DPM prior to the assessment of inflammatory signaling intermediates. DPM led to the activation of Rat sarcoma GTPase (Ras), p38 MAPK and NF-κB in WT AMs and, when compared to WT AMs, these intermediates were diminished in DPM-exposed AMs isolated from RAGE null mice. Furthermore, cytokines implicated in inflammation, including IL-4, IL-12, IL-13 and TNFα, were all significantly decreased in DPM-exposed RAGE null AMs compared to similarly exposed WT AMs. These results demonstrate that diesel-induced inflammatory responses by primary AMs are mediated, at least in part, via RAGE signaling mechanisms. Further work may show that RAGE signaling in both alveolar epithelial cells and resident macrophages is a potential target in the treatment of inflammatory lung diseases exacerbated by environmental pollution.  相似文献   

19.
Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups.  相似文献   

20.
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号