首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two rice genotypes, Kalanamak 3119 (KN3119) and Pusa Basmati 1(PB1) differing in their optimum nitrogen requirements (30 and 120 kg/ha, respectively) were undertaken to study the expression of both high and low affinity ammonium transporter genes responsible for ammonium uptake. Exposing the roots of the seedlings of both the genotypes to increasing (NH4)2SO4 concentrations revealed that all the three families of rice AMT genes are expressed, some of which get altered in a genotype and concentration specific manner. This indicates that individual ammonium transporter genes have defined contributions for ammonium uptake and plant growth. Interestingly, in response to increasing nitrogen concentrations, a root specific high affinity gene, AMT1;3, was repressed in the roots of KN3119 but not in PB1 indicating the existence of a differential ammonium sensing mechanism. This also indicates that not only AMT1;3 is involved not only in ammonium uptake but may also in ammonium sensing. Further, if it can differentiate and could be used as a biomarker for nitrogen responsiveness. Expression analysis of low affinity AMT genes showed that, both AMT2;1 and AMT2;2 have high levels of expression in both roots and shoots and in KN3119 are induced at low ammonium concentrations. Expressions of AMT3 family genes were higher shoots than in the roots indicating that these genes are probably involved in the translocation and distribution of ammonium ions in leaves. The expression of the only high affinity AMT gene, AMT1;1, along with six low affinity AMT genes in the shoots suggests that low affinity AMTs in the shoots leaves are involved in supporting AMT1;1 to carry out its activities/function efficiently.  相似文献   

2.
Members of the Glomeromycota form the arbuscular mycorrhiza (AM) symbiosis. They supply plants with inorganic nutrients, including nitrogen, from the soil. To gain insight into transporters potentially facilitating nitrogen transport processes, ammonium transporters (AMTs) of Geosiphon pyriformis, a glomeromycotan fungus forming a symbiosis with cyanobacteria, were studied. Three AMT genes were identified, and all three were expressed in the symbiotic stage. The localization and functional characterization of the proteins in a heterologous yeast system revealed distinct characteristics for each of them. AMT1 of G. pyriformis (GpAMT1) and GpAMT2 were both plasma membrane localized, but only GpAMT1 transported ammonium. Neither protein transported the ammonium analogue methylammonium. Unexpectedly, GpAMT3 was localized in the vacuolar membrane, and it has as-yet-unknown transport characteristics. An unusual cysteine residue in the AMT signature of GpAMT2 and GpAMT3 was identified, and the corresponding residue was demonstrated to play an important role in ammonium transport. Surprisingly, each of the three AMTs of G. pyriformis had very distinct features. The localization of an AMT in the yeast vacuolar membrane is novel, as is the described amino acid residue that clearly influences ammonium transport. The AMT characteristics might reflect adaptations to the lifestyle of glomeromycotan fungi.  相似文献   

3.
4.
5.
The ammonium flux across prokaryotic, plant, and animal membranes is regulated by structurally related ammonium transporters (AMT) and/or related Rhesus (Rh) glycoproteins. Several plant AMT homologs, such as AtAMT1;2 from Arabidopsis, elicit ionic, ammonium-dependent currents when expressed in oocytes. By contrast, functional evidence for the transport of NH3 and the lack of coupled ionic currents has been provided for many Rh proteins. Furthermore, despite high resolution structures the transported substrate in many bacterial homologs, such as AmtB from Escherichia coli, is still unclear. In a heterologous genetic screen in yeast, AtAMT1;2 mutants with reduced transport activity were identified based on the resistance of yeast to the toxic transport analog methylamine. When expressed in oocytes, the reduced transport capacity was confirmed for either of the mutants Q67K, M72I,and W145S. Structural alignments suggest that these mutations were dispersed at subunit contact sites of trimeric AMTs, without direct contact to the pore lumen. Surprisingly, and in contrast to the wild type AtAMT1;2 transporter, ionic currents were not associated with the substrate transport in these mutants. Whether these data suggest that the wild type AtAMT1;2 functions as H+/NH3 co-transporter, as well as how the strict substrate coupling with protons is lost by the mutations, is discussed.  相似文献   

6.
7.
The molecular physiology of ammonium uptake and retrieval   总被引:18,自引:0,他引:18  
Plants are able to take up ammonium from the soil, or through symbiotic interactions with microorganisms, via the root system. Using functional complementation of yeast mutants, it has been possible to identify a new class of membrane proteins, the ammonium transporter/methylammonium permease (AMT/MEP) family, that mediate secondary active ammonium uptake in eukaryotic and prokaryotic organisms. In plants, the AMT gene family can be subdivided according to their amino-acid sequences into three subfamilies: a large subfamily of AMT1 genes and two additional subfamilies each with single members (LeAMT1;3 from tomato and AtAMT2;1 from Arabidopsis thaliana). These transporters vary especially in their kinetic properties and regulatory mechanism. High-affinity transporters are induced in nitrogen-starved roots, whereas other transporters may be considered as the 'work horses' that are active when conditions are conducive to ammonium assimilation. The expression of several AMTs in root hairs further supports a role in nutrient acquisition. These studies provide basic information that will be needed for the dissection of nitrogen uptake by plants at the molecular level and for determining the role of individual AMTs in nutrient uptake and potentially in nutrient efficiency.  相似文献   

8.
During arbuscular mycorrhizal (AM) symbiosis, the plant gains access to phosphate (Pi) and nitrogen delivered by its fungal symbiont. Transfer of mineral nutrients occurs at the interface between branched hyphae called arbuscules and root cortical cells. In Medicago truncatula, a Pi transporter, PT4, is required for symbiotic Pi transport, and in pt4, symbiotic Pi transport fails, arbuscules degenerate prematurely, and the symbiosis is not maintained. Premature arbuscule degeneration (PAD) is suppressed when pt4 mutants are nitrogen-deprived, possibly the result of compensation by PT8, a second AM-induced Pi transporter. However, PAD is also suppressed in nitrogen-starved pt4 pt8 double mutants, negating this hypothesis and furthermore indicating that in this condition, neither of these symbiotic Pi transporters is required for symbiosis. In M. truncatula, three AMT2 family ammonium transporters are induced during AM symbiosis. To test the hypothesis that suppression of PAD involves AMT2 transporters, we analyzed double and triple Pi and ammonium transporter mutants. ATM2;3 but not AMT2;4 was required for suppression of PAD in pt4, while AMT2;4, but not AMT2;3, complemented growth of a yeast ammonium transporter mutant. In summary, arbuscule life span is influenced by PT4 and ATM2;3, and their relative importance varies with the nitrogen status of the plant.  相似文献   

9.
AMT/Mep ammonium transporters mediate high affinity ammonium/ammonia uptake in bacteria, fungi, and plants. The Arabidopsis AMT1 proteins mediate uptake of the ionic form of ammonium. AMT transport activity is controlled allosterically via a highly conserved cytosolic C terminus that interacts with neighboring subunits in a trimer. The C terminus is thus capable of modulating the conductivity of the pore. To gain insight into the underlying mechanism, pore mutants suppressing the inhibitory effect of mutations in the C-terminal trans-activation domain were characterized. AMT1;1 carrying the mutation Q57H in transmembrane helix I (TMH I) showed increased ammonium uptake but reduced capacity to take up methylammonium. To explore whether the transport mechanism was altered, the AMT1;1-Q57H mutant was expressed in Xenopus oocytes and analyzed electrophysiologically. AMT1;1-Q57H was characterized by increased ammonium-induced and reduced methylammonium-induced currents. AMT1;1-Q57H possesses a 100× lower affinity for ammonium (Km) and a 10-fold higher Vmax as compared with the wild type form. To test whether the trans-regulatory mechanism is conserved in archaeal homologs, AfAmt-2 from Archaeoglobus fulgidus was expressed in yeast. The transport function of AfAmt-2 also depends on trans-activation by the C terminus, and mutations in pore-residues corresponding to Q57H of AMT1;1 suppress nonfunctional AfAmt-2 mutants lacking the activating C terminus. Altogether, our data suggest that bacterial and plant AMTs use a conserved allosteric mechanism to control ammonium flux, potentially using a gating mechanism that limits flux to protect against ammonium toxicity.All organisms depend on an adequate supply of nutrients, especially nitrogen. For microorganisms and plants, which are able to assimilate ammonium, NH4+ represents the sole bioavailable nitrogen form. (Nitrate use requires enzymatic conversion to ammonia.) Plants preferentially take up ammonium; however, overaccumulation of NH4+ is toxic to microorganisms and plants (1, 2.) Levels above 50 μm become toxic for the central nervous system of most mammals (3, 4). A precise homeostasis of the cellular levels of ammonium is therefore critical.Plant ammonium uptake is mediated by low affinity/high capacity and high affinity/low capacity transporters (5). Nonselective cation channels (2), potassium channels (6), and members of the aquaporin family appear to be able to mediate NH3/NH4+ low affinity uptake (79). High affinity uptake by transporters of the AMT/Mep superfamily is essential at supply levels in the micromolar to low millimolar range (1012). AMT/Mep ammonium transporter genes were originally identified in yeast and plants by complementation of a yeast mutant deficient in ammonium uptake (13, 14). In contrast to potassium channels, which do not effectively differentiate between potassium and ammonium, AMTs are highly selective for ammonium and its methylated form, methylammonium (MeA).6 Plant AMT1 ammonium transporters were shown to be electrogenic when expressed in Xenopus oocytes, suggesting transport of charged NH4+ or co-transport of NH3 with a proton (15). Quantitation of charge movement and tracer uptake demonstrated that AMT1 transports exclusively the ionic form, i.e. each transported 14C-MeA molecule corresponded to the transfer of a single positive elementary charge across the membrane (16). The high affinity and low capacity of AMT1, which is too slow to be classified as a channel, suggests that it rather functions as a transporter, with significant conformational changes limiting its turnover numbers. Interestingly, it has been suggested that the bacterial homologs use a different mechanism, in that they mediate transport of uncharged NH3 (17), although this hypothesis has been disputed (18, 19).Biochemical as well as structural analyses of bacterial and archaeal AMTs revealed a highly stable and conserved trimeric complex (15). Each monomer is composed of 11 transmembrane helices (TMHs) that form a noncontinuous channel through which the substrate can pass. Highly conserved residues are observed in positions that are likely crucial for function: a tryptophan located in a central extracellular surface cleft is thought to be part of a selectivity filter, discriminating K+ ions and water molecules from NH4+ via a cation-π interaction and H-bonds via neighboring residues. Below this cleft, a pair of phenylalanines is assumed to function as a gate that blocks the entrance of the channel, which, after that point, appears open to the cytoplasmic side. Two histidines on helices V and VI are in H-bonding distance and line the central part of the channel pathway.Similar to the bacterial Na+/leucine and the Na+/arabinose transporters (20, 21), AMT monomers are built from an ancient duplication of a subunit of five TMHs, organized as a pseudo-2-fold axis in the membrane plane; in the case of the AMT/Meps, an additional 11th segment M11 (5 + 5 + 1), a 50-Å α-helix, belts the surface of the monomer at an angle of ∼50° relative to the normal vector of the membrane plane and connects to the cytosolic C terminus (17, 23, 24). Recent findings demonstrate that AMTs can exist in active and inactive states, probably controlled by phosphorylation of residues in the conserved C terminus (25).7 In the Arabidopsis thaliana AMT1, an allosteric trans-activation is mediated through the interaction of the C termini with cytosolic loops of the neighboring subunits in a trimer (25). This finding is consistent with a novel regulatory mechanism that can provide for rapid shut-off of transport. This feedback loop may potentially be important for protection against ammonium toxicity by limiting peak output, namely ammonium uptake capacity at high external supply. Analysis of >900 AMT homologs shows that the C terminus is highly conserved from cyanobacteria to fungi and plants, indicating that the regulatory mechanism may be conserved (25).A suppressor screen using inactive mutants carrying a mutation in the cytosolic C terminus of AMT1;1 identified mutants that had lost their strict dependence on allosteric trans-activation (25). Here, we show that, when expressed in yeast, some of these mutants show increased ammonium transport capacity. Electrophysiological analysis of one of the pore mutants, AMT1;1-Q57H, demonstrates that transport is still electrogenic and that the increased ammonium sensitivity is due to a conversion from a saturable high affinity kinetic profile to low affinity and high capacity uptake kinetics. Mutation of the corresponding glutamine residue (Q53H) also suppresses an inactive mutant of the archaeal Archaeoglobus fulgidus AfAmt-2, demonstrating the conservation of these mechanisms from archaea to higher plants.  相似文献   

10.
11.
Ammonium transport across plant plasma membranes is facilitated by AMT/Rh-type ammonium transporters (AMTs), which also have homologs in most organisms. In the roots of the plant Arabidopsis (Arabidopsis thaliana), AMTs have been identified that function directly in the high-affinity NH4+ acquisition from soil. Here, we show that AtAMT1;2 has a distinct role, as it is located in the plasma membrane of the root endodermis. AtAMT1;2 functions as a comparatively low-affinity NH4+ transporter. Mutations at the highly conserved carboxyl terminus (C terminus) of AMTs, including one that mimics phosphorylation at a putative phosphorylation site, impair NH4+ transport activity. Coexpressing these mutants along with wild-type AtAMT1;2 substantially reduced the activity of the wild-type transporter. A molecular model of AtAMT1;2 provides a plausible explanation for the dominant inhibition, as the C terminus of one monomer directly contacts the neighboring subunit. It is suggested that part of the cytoplasmic C terminus of a single monomer can gate the AMT trimer. This regulatory mechanism for rapid and efficient inactivation of NH4+ transporters may apply to several AMT members to prevent excess influx of cytotoxic ammonium.  相似文献   

12.
Prokaryotes, plants and animals control ammonium fluxes by the regulated expression of ammonium transporters (AMTs) and/or the related Rhesus (Rh) proteins. Plant AMTs were previously reported to mediate electrogenic transport. Functional analysis of AtAMT2 from Arabidopsis in yeast and oocytes suggests that is the recruited substrate, but the uncharged form NH3 is conducted. AtAMT2 partially co-localized with electrogenic AMTs and conducted methylamine with low affinity. This transport mechanism may apply to other plant ammonium transporters and explains the different capacities of AMTs to accumulate ammonium in the plant cell.  相似文献   

13.
We have cloned and characterized the first member of a novel family of ammonium transporters in plants: AtAMT2 from Arabidopsis thaliana. AtAMT2 is more closely related to bacterial ammonium transporters than to plant transporters of the AMT1 family. The protein was expressed and functionally characterized in yeast. AtAMT2 transported ammonium in an energy-dependent manner. In contrast to transporters of the AMT1 family, however, AtAMT2 did not transport the ammonium analogue, methylammonium. AtAMT2 was expressed more highly in shoots than roots and was subject to nitrogen regulation.  相似文献   

14.
15.
The present study was aimed at understanding the role of different hosts in ammonium transporter1;2 expressions and glutamine synthetase(GS) activity and their effects on the growth parameters in the sandal. Sandal plant associated with leguminous host expressed better growth parameters. GS activity of leguminous hosts alone and in host associated sandals was analyzed using GS transferase assay. Highest GS activity was expressed in Mimosa pudica—sandal association compared to other leguminous and non-leguminous host associations. The association of N2 fixing host with sandal enhanced C and N levels in order to maintain the C/N value. The role of ammonium transporters in N nutrition of sandal-host association was elucidated by cloning AMT1;2 from the leaves, haustoria and roots of host associated sandal and quantifying the relative expression by the \( 2^{{ - \Delta \Delta {\text{C}}_{\text{T}} }} \) method. SaAMT1;2 was strongly up-regulated in leaves, roots and haustoria of leguminous host associated sandal compared to non-leguminous host associations. The relative increase in SaAMT1;2 expressions and up-regulated GS activity positively affected the growth parameters in sandal when associated with leguminous hosts.  相似文献   

16.
17.
18.
19.
Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.  相似文献   

20.
Glutamate dehydrogenase (GDH) tends to have a lower affinity for ammonium than glutamine synthetase (GS) in higher plants. Consequently, nitrogen is mostly assimilated as ammonium by the GS/glutamate synthase pathway which requires 2-oxoglutarate (2-OG) as carbon skeletons. In contrast, the NADP(H)-dependent GDH in fungi has a higher affinity for ammonium than that in higher plants and plays a more significant part in ammonium assimilation. We isolated an NADP(H)-GDH gene (PcGDH) from the fungus Pleurotus cystidiosus and heterologously expressed it in rice (Oryza sativa L.). Alterations in nitrogen assimilation, growth, metabolism, and grain yield were observed in the transgenic plants. An investigation of the kinetic properties of the purified recombinant protein demonstrated that the amination activity (7.05 ± 0.78 μmoL min?1 mg soluble protein?1) of PcGDH was higher than the deamination activity (3.36 ± 0.42 μmoL min?1 mg soluble protein?1) and that the K m value for ammonium (K m = 3.73 ± 0.23 mM) was lower than that for the glutamate (K m = 15.97 ± 0.31 mM), indicating that the PcGDH tends to interconvert 2-OG and glutamate. Examination of the activity of NADP(H)-GDH in control and transgenic lines demonstrated that NADP(H)-GDH activity in the transgenic lines was markedly higher than that in the control lines; in particular, the amination activity was significantly higher than the deamination activity in shoots of the transgenic lines. The results of the hydroponics experiment revealed that shoot and root length, fresh weight, chlorophyll content, nitrogen content, and amino acid levels (glutamate, glutamine, and total amino acids) were elevated in transgenic lines in comparison with those of the control line under different nitrogen conditions at seedling stage. The 1,000-grain weight and the panicle number in transgenic lines were considerably augmented in the field condition, yet the filled grain rate dropped slightly and there was no apparent change in the grain yield. The levels of glutelin and prolamine in the transgenic seeds were considerably higher than those in control seeds. In conclusion, these results demonstrate that heterologous expression of P. cystidiosus GDH (PcGDH) could improve nitrogen assimilation and growth in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号