首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
脱水应答元件结合蛋白(Dehydration-responsive element binding proteins,DREBs)是一类重要的植物耐逆相关转录因子.蒙古沙冬青Ammopiptanthus mongolicus是中国西北荒漠区特有的强耐逆常绿阔叶灌木.为探明其AmDREB1F基因在耐受非生物逆境中的功能和...  相似文献   

2.
Chen  Zhihua  Lu  Hsueh-Han  Hua  Shumei  Lin  Kuan-Hung  Chen  Ningdan  Zhang  Yangwen  You  Ziyi  Kuo  Yun-Wei  Chen  Shi-Peng 《Journal of plant research》2019,132(6):857-866
Journal of Plant Research - Minghuai 1 (MH1) is a yam (Dioscorea alata) cultivar with high tolerance to flooding but sensitivity to chilling. MH1 responded differently to chilling and flooding...  相似文献   

3.
4.

Cinnamyl alcohol dehydrogenase (CAD) is the enzyme in the last step of lignin biosynthetic pathway and is involved in the generation of lignin monomers. IbCAD1 gene in sweetpotato (Ipomoea batatas) was identified, and its expression was induced by abiotic stresses based on promoter analysis. In this study, transgenic Arabidopsis plants overexpressing IbCAD1 directed by CaMV 35S promoter were developed to determine the physiological function of IbCAD1. IbCAD1-overexpressing transgenic plants exhibited better plant growth and higher biomass compared to wild type (WT), under normal growth conditions. CAD activity was increased in leaves and roots of transgenic plants. Sinapyl alcohol dehydrogenase activity was induced to a high level in roots, which suggests that IbCAD1 may regulate biosynthesis of syringyl-type (S) lignin. Lignin content was increased in stems and roots of transgenic plants; this increase was in S lignin rather than guaiacyl (G) lignin. Overexpression of IbCAD1 in Arabidopsis resulted in enhanced seed germination rates and tolerance to reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). Taken together, our results show that IbCAD1 controls lignin content by biosynthesizing S units and plays an important role in plant responses to oxidative stress.

  相似文献   

5.
6.
Dai JR  Liu B  Feng DR  Liu HY  He YM  Qi KB  Wang HB  Wang JF 《Plant cell reports》2011,30(7):1219-1230
Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect l-lactate dehydrogenase (l-LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress.  相似文献   

7.
Wang  Hui  Huang  Zejun  Chen  Qi  Zhang  Zhijin  Zhang  Hongbo  Wu  Yanming  Huang  Dafang  Huang  Rongfeng 《Plant molecular biology》2005,55(2):183-192
Plant Molecular Biology - The ethylene, jasmonic acid and osmotic signaling pathways respond to environmental stimuli and in order to understand how plants adapt to biotic and abiotic stresses it...  相似文献   

8.
The objective of this study was to transfer catalase gene (CAT1 and CAT2) complementary (c)DNAs under the control of a ubiquitin promoter into Arabidopsis via Agrobacterium-mediated transformation. A real-time polymerase chain reaction analysis demonstrated that both the BoCAT1 and BoCAT2 genes were overexpressed in transgenic Arabidopsis thaliana (At). The activity of CAT in the AtCAT2-2 transgenic line was 6-fold higher than that of the non-transgenic plant under heat stress, and the CAT amount in the AtCAT2-2 line also highly accumulated according to a Western blot analysis. Compared to non-transgenic Arabidopsis plants, a lower level of heat-induced H2O2 accumulation was detected by diaminobenzidine staining in leaves of transgenic plants with a high level of CAT activity, indicating that overexpression of BoCAT in Arabidopsis could enhance the heat tolerance by eliminating H2O2. This is the first report suggesting that CAT-encoding gene expression in Arabidopsis is regulated by heat stress.  相似文献   

9.
The Arabidopsis thaliana late embryogenesis abundant gene AtEm6 is required for normal seed development and for buffering the rate of dehydration during the latter stages of seed maturation. However, its function in salt stress tolerance is not fully understood. In this investigation, cell suspension cultures of three plant species rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtEm6. Integration of the AtEm6 gene into the genome of rice, cotton, and white pine has been confirmed by polymerase chain reaction, Southern blotting, and northern blotting analyses. Three transgenic cell lines from each of O. sativa, G. hirsutum, and P. strobus were used to analyze salt stress tolerance conferred by the overexpression of the AtEm6 gene. Our results demonstrated that expression of the AtEm6 gene enhanced salt tolerance in transgenic cell lines. A decrease in lipid peroxidation and an increment in antioxidant enzymes ascorbate peroxidase, glutathione reductase and superoxide dismutase activities were observed in the transgenic cell lines, compared to the non- transgenic control. In rice, AtEM6 increased expression of Ca2+-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt. These results suggested that overexpression of the AtEM6 gene in transgenic cell lines improved salt stress tolerance by regulating expression of Ca2+-dependent protein kinase genes. Overexpression of the AtEM6 gene could be an alternative choice for engineering plant abiotic stress tolerance.  相似文献   

10.
11.
The family of pathogenesis-related protein 4 (PR4) is a group of proteins with a Barwin domain in C-terminus and generally thought to be involved in plant defense responses. In the present study, PR4 (designated as PgPR4) cDNA was isolated from the leaf of Panax ginseng C.A. Meyer. and characterized. The ORF is 513 bp with a deduced amino acid sequence of 170 residues. A GenBank BlastX search revealed that the deduced amino acid of PgPR4 shares the highest sequence similarity to PR4 of Sambucus nigra (72% identity). Sequence and structural analysis indicated that PgPR4 belongs to class II of PR4 proteins. This is the first report on the isolation of PR4 gene from the P. ginseng genome. The high-level expression of PgPR4 was observed in the root as revealed by quantitative real-time PCR. The temporal expression analysis demonstrated that PgPR4 expression could be up-regulated by pathogen infection, salt, wounding, and hormone stresses. These results suggest that PgPR4 could play a role in the molecular defense response of ginseng to abiotic stress and pathogen attack.  相似文献   

12.
The PmPR10-1.10 protein from western white pine is known to be associated with frost hardiness, and up-regulated by seasonal cold acclimation and biotic and abiotic stresses. To gain insight into the molecular basis of cold hardiness, we investigated the potential physiological role of PmPR10-1.10 by gene overexpression in transgenic Arabidopsis plants. A binary vector was constructed for PmPR10-1.10 synthesis in higher plants and transgenic Arabidopsis lines were generated by Agrobacterium-mediated transformation. Following Western protein blot analysis confirming target protein production, transgenic Arabidopsis lines were tested for cold tolerance by electrolyte leakage analysis post treatment of different freezing temperatures. Our results demonstrate that accumulation of PmPR10-1.10 protein resulted in significantly greater freezing tolerance in transgenic plants than in wild type plants. This indicates that the transfer and selection of cold acclimation proteins like PmPR10-1.10 may be a breeding strategy for the development of freezing tolerance in conifers.  相似文献   

13.
An orthologue of the vacuolar H+-pyrophosphatase (H+-PPase) gene, AmVP1, was isolated from a desert plant, Ammopiptanthus mongolicus (Leguminosae), by RACE-PCR. AmVP1 has a total length of 2,875?bp, with an open reading frame of 2,316?bp, which encodes a predicted polypeptide of 771 amino acids. Sequence analysis revealed that it has high similarity with the VP1 proteins from other plants. AmVP1 was strongly induced by drought stress, but only responded initially to a salt stress. In addition, a 1.8?kb upstream sequence of AmVP1 was isolated from the genomic DNA of A. mongolicus by TAIL-PCR. Cis-element as well as promoter prediction analysis indicated that it contained three promoter sequences and more than 50 cis-elements. Heterologous expression of AmVP1 in the yeast mutant ena1 could partially suppress its hypersensitivity to NaCl. Over-expressing AmVP1 resulted in enhanced tolerances to both drought and salt stresses in transgenic Arabidopsis plants. The transgenic plants accumulated more sodium and potassium in their leaves after salt stress, and retained more water while producing less malondialdehyde during drought stress. A comparative study of salt tolerance between AtVP1 (an H+-PPase from Arabidopsis) and AmVP1 transgenic Arabidopsis suggested that the efficiency of AmVP1 is more than threefold higher than AtVP1. Our work suggested that AmVP1 functioned as a typical VP1 gene, but might be a more efficient orthologue than AtVP1 and therefore a valuable gene for improving plant salt and drought tolerances.  相似文献   

14.
15.
16.
Nuclear-encoded chloroplast small heat shock proteins (Cp-sHSPs) play important roles in plant stress tolerance due to their abundance and diversity. Their functions in Primula under heat treatment are poorly characterized. Here, expression analysis showed that the Primula Cp-sHSP gene, PfHSP21.4, was highly induced by heat stress in all vegetative and generative tissues in addition to constitutive expression in certain development stages. PfHSP21.4 was introduced into Arabidopsis, and its function was analysed in transgenic plants. Under heat stress, the PfHSP21.4 transgenic plants showed increased heat tolerance as shown by preservation of hypocotyl elongation, membrane integrity, chlorophyll content and photosystem II activity (Fv/Fm), increased seedling survival and increase in proline content. Alleviation of oxidative damage was associated with increased activity of superoxide dismutase and peroxidase. In addition, the induced expression of HSP101, HSP70, ascorbate peroxidase and Δ1-pyrroline-5-carboxylate synthase under heat stress was more pronounced in transgenic plants than in wild-type plants. These results support the positive role of PfHSP21.4 in response to heat stress in plants.  相似文献   

17.
18.
Molecular Biology Reports - Heat shock protein 70s (Hsp70s) are major members of the heat shock protein family and play a variety of roles to protect plants against stress. Plant Hsp70s are a...  相似文献   

19.
Abstract

Transgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis ATP sulfurylase gene were generated using Agrobacterium-mediated genetic transformation to enhance their heavy metal accumulation efficiency. The ATP sulfurylase gene was cloned from Arabidopsis, following exposure to vanadium (V) and lead (Pb), and transferred into an Agrobacterium tumefaciens binary vector. This was co-cultivated with leaf explants of the alfalfa genotype Regen SY. Co-cultivated leaf explants were cultured on callus and somatic embryo induction medium, followed by regeneration medium for regenerating complete transgenic plants. The transgenic nature of the plants was confirmed using PCR and southern hybridization. The expression of Arabidopsis ATP sulfurylase gene in the transgenic plants was evaluated through RT-PCR. The selected transgenic lines showed increased tolerance to a mixture of five heavy metals and also demonstrated enhanced metal uptake ability under controlled conditions. The transgenic lines were fertile and did not exhibit any apparent morphological abnormality. The results of this study indicated an effective approach to improve the heavy metal accumulation ability of alfalfa plants which can then be used for the remediation of contaminated soil in arid regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号