首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Artemisinin is an endoperoxide sesquiterpene lactone isolated from the aerial parts of Artemisia annua L., and is presently the most potent anti-malarial drug. Owing to the low yield of artemisinin from A. annua as well as the widespread application of artemisinin-based combination therapy recommended by the World Health Organization, the global demand for artemisinin is substantially increasing and is therefore rendering artemisinin in short supply. An economical way to increase artemisinin production is to increase the content of artemisinin in A. annua. In this study, three key genes in the artemisinin biosynthesis pathway, encoding farnesyl diphosphate synthase, amorpha-4, 11-diene C-12 oxidase and its redox partner cytochrome P450 reductase, were over-expressed in A. annua through Agrobacterium-mediated transformation. The transgenic lines were confirmed by Southern blotting and the over-expressions of the genes were demonstrated by real-time PCR assays. The HPLC analysis showed that the artemisinin contents in transgenic lines were increased significantly, with the highest one found to be 3.6-fold higher (2.9 mg/g FW) than that of the control. These results demonstrate that multigene engineering is an effective way to enhance artemisinin content in A. annua.  相似文献   

2.
Gibberellins (GAs) are diterpenoid hormones, control various physiological developments in plants. The role of gibberellins on morphology and secondary metabolite production was examined in Artemisia annua, a medicinal plant that has been acknowledged as a source of artemisinin, an antimalarial compound. Subsequently, the GA20ox gene from Torenia fournieri (TfGA20ox2) was transferred to A. annua by Agrobacterium-mediated transformation. Compared with wild type plants, all nine transgenic plants showed significantly higher plant heights and artemisinin contents. The highest artemisinin content and yield in TfGA20ox2-overexpressing plants was around two-fold higher than wild type. Moreover, transgenic plants had higher numbers of branches (52.4%) and greater branch lengths (60–203%), but smaller leaf size (77.6%). Interestingly, relative to wild type the number and size of glandular trichomes in transgenic leaves was about 30 and 35% higher, respectively. From GC–MS analysis, the proportion of diterpenes in transgenic plant extracts was 1.5-fold lower than those noticed in wild type, while the proportion of sesquiterpenes was increased about 1.6 times when compared to wild type. However, the content proportion of monoterpenes showed a slightly increase, whereas the level of triterpenes showed no variation. In addition, two monoterpenes (eucalyptol and borneol), four sesquiterpenes (α-caryophyllene, β-guaiene, δ-cadinene and β-cubebene) and one triterpenes (isomultiflorenone) were detected only in transgenic extract, whereas d-α-tocopherol, a diterpenoid compound was found only in wild type but not transgenic plant. These results suggested that gibberellins play a significant role in regards to morphology, trichome formation and terpenoid metabolite production in A. annua.  相似文献   

3.
The present study was undertaken to find out individual and interactive effects of arsenic (As) and salicylic acid (SA) on an important medicinal plant, Artemisia annua. As uptake and its accumulation was detected and found to be maximum in roots at higher As concentration (150 μM). Under As treatments, H2O2 and MDA content were induced. Biomass and chlorophyll content were negatively affected under As treatments. Furthermore, enzymatic (SOD, CAT, APX, and GR) and non-enzymatic antioxidants were also enhanced under As treatments. Exogenous application of SA reduced the extent of H2O2 and O2 ? generation and lipid peroxidation, while reverted biomass and chlorophyll content to overcome oxidative stress. Simultaneous application of SA with As increased endogenous SA level, artemisinin, and dihydroartemisinic acid as compared with individual As treatment and pre-application of SA with As treatments. The expression of four key artemisinin biosynthetic pathway genes, i.e., ADS, CYP71AV1, DBR2, and ALDH1 were upregulated at a maximum in plants simultaneously treated with SA and As. Similar pattern of artemisinin accumulation and glandular trichome size was observed which attest that SA has a stimulatory impact on artemisinin biosynthesis under As stress. Our study suggests that exogenous application of SA and As together induced more tolerance in A. annua than a comparable dose of SA pre-treatment. The study may provide a platform with dual benefits by developing As-tolerant plants to be used for phytoremediation of arsenic from As-contaminated soil and obtaining high artemisinin-producing A. annua plants.  相似文献   

4.
Artemisia annua L. is mostly known for a bioactive metabolite, artemisinin, an effective sesquiterpene lactone used against malaria without any reputed cases of resistance. In this experiment, bioinoculants viz., Streptomyces sp. MTN14, Bacillus megaterium MTN2RP and Trichoderma harzianum Thu were applied as growth promoting substances to exploit full genetic potential of crops in terms of growth, yield, nutrient uptake and particularly artemisinin content. Further, multi-use of the bioinoculants singly and in combinations for the enhancement of antioxidant potential and therapeutic value was also undertaken which to our knowledge has never been investigated in context with microbial application. The results demonstrated that a significant (P < 0.05) increase in growth, nutrient uptake, total phenolic, flavonoid, free radical scavenging activity, ferric reducing antioxidant power, reducing power and total antioxidant capacity were observed in the A. annua treated with a combination of bioinoculants in comparison to control. Most importantly, an increase in artemisinin content and yield by 34 and 72 % respectively in the treatment having all the three microbes was observed. These results were further authenticated by the PCA analysis which showed positive correlation between plant macronutrients and antioxidant content with plant growth and artemisinin yield of A. annua. The present study thus highlights a possible new application of compatible bioinoculants for enhancing the growth along with antioxidant and therapeutic value of A. annua.  相似文献   

5.
Strain improvement is a powerful tool in commercial development of microbial fermentation processes. Strains of Aspergillus sojae which were previously identified as polygalacturonase producers were subjected to the cost-effective mutagenesis and selection method, the so-called random screening. Physical (ultraviolet irradiation at 254 nm) and chemical mutagens (N-methyl-N′-nitro-N-nitrosoguanidine) were used in the development and implementation of a classical mutation and selection strategy for the improved production of pectic acid-degrading enzymes. Three mutation cycles of both mutagenic treatments and also the combination of them were performed to generate mutants descending from A. sojae ATCC 20235 and mutants of A. sojae CBS 100928. Pectinolytic enzyme production of the mutants was compared to their wild types in submerged and solid-state fermentation. Comparing both strains, higher pectinase activity was obtained by A. sojae ATCC 20235 and mutants thereof. The highest polygalacturonase activity (1,087.2?±?151.9 U/g) in solid-state culture was obtained by mutant M3, which was 1.7 times increased in comparison to the wild strain, A. sojae ATCC 20235. Additional, further mutation of mutant M3 for two more cycles of treatment by UV irradiation generated mutant DH56 with the highest polygalacturonase activity (98.8?±?8.7 U/mL) in submerged culture. This corresponded to 2.4-fold enhanced polygalacturonase production in comparison to the wild strain. The results of this study indicated the development of a classical mutation and selection strategy as a promising tool to improve pectinolytic enzyme production by both fungal strains.  相似文献   

6.
7.
8.
Artemisinin, the endoperoxide sesquiterpene lactone, is an effective antimalarial drug isolated from the Chinese medicinal plant Artemisia annua L. Due to its effectiveness against multi-drug-resistant cerebral malaria, it becomes the essential components of the artemisinin-based combination therapies which are recommended by the World Health Organization as the preferred choice for malaria tropica treatments. To date, plant A. annua is still the main commercial source of artemisinin. Although semi-synthesis of artemisinin via artemisinic acid in yeast is feasible at present, another promising approach to reduce the price of artemisinin is using plant metabolic engineering to obtain a higher content of artemisinin in transgenic plants. In the past years, an Agrobacterium-mediated transformation system of A. annua has been established by which a number of genes related to artemisinin biosynthesis have been successfully transferred into A. annua plants. In this review, the progress on increasing artemisinin content in A. annua by transgenic approach and its future prospect are summarized and discussed.  相似文献   

9.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

10.
Artemisinin, isolated from an annual herbaceous plant Artemisia annua L., is an effective antimalarial compound. However, artemisinin is accumulated in small amounts (0.01–0.1% leaf dry weight) in A. annua, resulting in constant high artemisinin price. Although metabolic engineering of partial artemisinin metabolic pathway in yeast achieved great success, artemisinin from A. annua is still the important business resource. Here, we report on the generation of transgenic plants with simultaneously overexpressing four artemisinin biosynthetic pathway genes, amorpha-4,11-diene synthase gene (ADS), amorpha-4,11-diene 12-monooxygenase gene (CYP71AV1), cytochrome P450 reductase gene (CPR), and aldehyde dehydrogenase 1 gene (ALDH1) via Agrobacterium-mediated transformation. The qRT-PCR analysis demonstrated that the introduced four genes of the transgenic lines were all highly expressed. Through high-performance liquid chromatography analysis, the artemisinin contents were increased markedly in transformants, with the highest being 3.4-fold higher compared with non-converter. These results indicate that overexpression of multiple artemisinin biosynthetic pathway genes is a promising approach to improve artemisinin yield in A. annua.  相似文献   

11.
不同土壤环境对黄花蒿生长和青蒿素含量的影响研究   总被引:1,自引:1,他引:0  
通过田间小区试验,比较研究了施肥与不施肥条件下,4种土壤环境(沙土、旱地土、水稻土和棕色石灰土)对黄花蒿的生长、生物量分配和青蒿素含量的影响。结果表明:黄花蒿对土壤养分的适应性较强,在沙土、旱地土、水稻土和石灰土上均能生长发育,养分水平低时,分配更多的生物量到根,根生物量分数和根/冠比增大;养分水平高时,分配更多的生物量到叶,叶生物量分数增加。黄花蒿的生长和青蒿素含量显著受土壤养分的影响,不施肥时,石灰土和水稻土栽培黄花蒿的株高、地径、总生物量、叶生物量和青蒿素含量显著大于旱地土,而旱地土又显著大于沙土。但在施肥条件下,以上参数不同土壤间无显著差异,且显著高于不施肥。因此,只要根据土壤养分状况合理施肥,黄花蒿在不同养分土壤栽培均能获得较高的青蒿素产量。  相似文献   

12.
13.
14.
Artemisinin is a promising and potent antimalarial drug naturally produced by the plant Artemisia annua L. but in very low yield. Its artemisinin content is known to be greatly affected by both genotype and environmental factors. In this study, the production of artemisinin and leaf biomass in Artemisia annua L. was significantly increased by exogenous GA3 treatment. The effect of GA3 application on expression of proposed key enzymes involved in artemisinin yield was examined in both wild type (007) and FPS-overexpression (253-2) lines of A. annua. In the wild type (007) at 6 h post GA3 application there was an abrupt rise in FPS, ADS and CYP71AV1 expression and at 24 h a temporary and significant peak in artemisinin (1.45-fold higher than the control). After GA3 application in line 253-2, there was a dramatic rise in expression of FPS at 3 h, CYP71AV1 at 9 h and ADS at 72 h and accumulation of artemisinin after 7 days, which was a delay when compared with the wild type plant. Thus, increased artemisinin content from exogenous GA3 treatment was associated with increased expression of key enzymes in the artemisinin biosynthesis pathway. Interestingly, exogenous GA3 continuously enhanced artemisinin content from the vegetative stage to flower initiation in both plant lines and gave significantly higher leaf biomass than in control plants. Consequently, the artemisinin yield in GA3-treated plants was much higher than in control plants. Although the maximum artemisinin content was found at the full blooming stage [2.1% dry weight (DW) in 007 and 2.4% DW in 253-2], the highest artemisinin yield in GA3-treated plants was obtained during the flower initiation stage (2.4 mg/plant in 007 and 2.3 mg/plant in 235-2). This was 26.3 and 27.8% higher, respectively, than in non-treated plants 007 and 253-2. This study showed that exogenous GA3 treatment enhanced artemisinin production in pot experiments and should be suitable for field application.  相似文献   

15.
Salinity has a great influence on plant growth and distribution. A few existing reports on Artemisia annua L. response to salinity are concentrated on plant growth and artemisinin content; the physiological response and salt damage mitigation are yet to be understood. In this study, the physiological response of varying salt stresses (50, 100, 200, 300, or 400 mM NaCl) on A. annua L. and the effect of exogenous salicylic acid (0.05 or 0.1 mM) at 300-mM salt stress were investigated. Plant growth, antioxidant enzyme activity, proline, and mineral element level were determined. In general, increasing salt concentration significantly reduced plant growth. Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were stimulated by salt treatment to a higher enzyme activity in treated plants than those in untreated plants. Content of proline had a visible range of increment in the salt-treated plants. Distribution of mineral elements was in inconformity: Na+ and Ca2+ were mainly accumulated in the roots; K+ and Mg2+ were concentrated in leaves and stems, respectively. Alleviation of growth arrest was observed with exogenous applications of salicylic acid (SA) under salt stress conditions. The activity of SOD and POD was notably enhanced by SA, but the CAT action was suppressed. While exogenous SA had no discernible effect on proline content, it effectively inhibited excessive Na+ absorption and promoted Mg2+ absorption. Ca2+ and K+ contents showed a slight reduction when supplemented with SA. Overall, the positive effect of SA towards resistance to the salinity of A. annua will provide some practical basis for A. annua cultivation.  相似文献   

16.
Extensive studies have been carried out for the optimization of regeneration and transformation conditions for both Agrobacterium tumefaciens- and Agrobacterium rhizogenes-mediated transformation of the highly medicinal plant Artemisia annua. Most protocols describe laborious transformation procedures requiring no less than 3 mo to obtain transgenic plants. This study reports rapid and efficient protocols for A. tumefaciens- and A. rhizogenes-mediated transformation of A. annua, which were equally effective for transformation of Artemisia dubia. In both transformation procedures, stem explants responded best for maximal production of transformed plants and hairy roots. In the case of A. tumefaciens-mediated transformation, stem explants were pre-cultured for 2 d followed by infection with A. tumefaciens strain LBA4404 for 48 h. A. annua explants showed maximal transformation rate (43.5%) on half-strength Murashige and Skoog medium containing 40 mg/L kanamycin in only 20 d. The same method was tested using a related species A. dubia and resulted in a transformation rate of 41.3%, demonstrating that this protocol is efficient and genotype-independent. In the case of A. rhizogenes-mediated transformation for the production of hairy root cultures, in vitro-grown stem explants were infected with a single colony of A. rhizogenes strain LBA9402 by creating incisions at different places of the stem explants, which resulted in production of hairy roots in only 7 d. The method was tested in both A. annua and A. dubia, which resulted in transformation rates of 90 and 87.5%, respectively. Integration of the transgene and copy number was confirmed by PCR and Southern blot analyses, respectively. The miniprep transformation protocols developed for both A. tumefaciens- and A. rhizogenes-mediated transformation are simple, efficient, and potentially applicable to other species of Artemisia for transfer of pharmaceutically important genes.  相似文献   

17.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), an important enzyme in the 2-c-methyl-d-erythritol-4-phosphate (MEP) pathway in plant plastids, provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the roles of the MEP pathway in regulating growth, development and artemisinin biosynthesis of Artemisia annua L., we used RNA interference technology to generate transgenic plants with suppressed expression of DXR in A. annua (AaDXR). Suppression of AaDXR resulted in shorter stems, decreased branch numbers and leaf area, lower density of leaf trichomes. Although AaDXR-RNAi plants had no significant changes on the stomatal conductance, the net photosynthesis rate was decreased by 20.0–31.4% due to the marked decline in the contents of chlorophyll. Decreased levels of endogenous gibberellic acid (GA3) and abscisic acid were also detected in the transgenic lines. The artemisinin contents in leaves of all tested transgenic lines declined by 41.8–73.4% at the vegetative stage and 61.5–63.6% at the stages of flowering. The enhancement of artemisinin contents by methyl jasmonate at 300 µM has been abolished at seedling and vegetative stages in AaDXR-RNAi plants. These results demonstrate that AaDXR play import roles in the control of plan vegetative growth and artemisinin biosynthesis in A. annua.  相似文献   

18.
Artemisia annua is the source of antimalarial phytomolecule, artemisinin. It is mainly produced and stored in the glandular secretory trichomes present in the leaves of the plant. Since, the artemisinin biosynthesis steps are yet to be worked out, in this investigation a microarray chip was strategized for the first time to shortlist the differentially expressing genes at a stage of plant producing highest artemisinin compared to the stage with no artemisinin. As the target of this study was to analyze differential gene expression associated with contrasting artemisinin content in planta and a genotype having zero/negligible artemisinin content was unavailable, it was decided to compare different stages of the same genotype with contrasting artemisinin content (seedling - negligible artemisinin, mature leaf - high artemisinin). The SCAR-marked artemisinin-rich (∼1.2%) Indian variety ‘CIM-Arogya’ was used in the present study to determine optimal plant stage and leaf ontogenic level for artemisinin content. A representative EST dataset from leaf trichome at the stage of maximal artemisinin biosynthesis was established. The high utility small scale custom microarray chip of A. annua containing all the significant artemisinin biosynthesis-related genes, the established EST dataset, gene sequences isolated in-house and strategically selected candidates from the A. annua Unigene database (NCBI) was employed to compare the gene expression profiles of two stages. The expression data was validated through semiquantitative and quantitative RT-PCR followed by putative annotations through bioinformatics-based approaches. Many candidates having probable role in artemisinin metabolism were identified and described with scope for further functional characterization.  相似文献   

19.
A significant enhancement in artemisinin content, an important anti-malarial compound, has been achieved in Artemisia annua L. shoots by co-cultivating with Piriformospora indica, a mycorrhiza-like fungus. The in vitro shoots derived from nodal cultures of A. annua were implanted on four different culture media namely, (i) Murashige & Skoog (MS) basal, (ii) MS + 5 μM indole-3-butyric acid (IBA), (iii) MS + P. indica and, (iv) MS + 5 μM IBA + P. indica. After 2 months, it was observed that the cultures reared on MS + 5 μM IBA + P. indica showed optimum growth in terms of shoot and root proliferation over those cultured without P. indica. The average shoot number on MS + 5 μM IBA + P. indica was 17.83 ± 1.01 and on MS + P. indica alone was 12.75 ± 1.10. A drastic decline in shoot number was observed without P. indica which was 2.0 ± 0.12 on basal and 4.9 ± 1.52 on 5 μM IBA. Similarly, a maximum average of 16.83 ± 0.82 roots were achieved on MS + 5 μM IBA + P. indica which declined to 10.75 ± 1.02 on MS + P. indica. A further decrease in root number occurred in shoots without P. indica, their average being 2.5 ± 0.12 on basal and 8.91 ± 1.57 on 5 μM IBA. HPLC analysis of the aforesaid cultures revealed that the quantity of artemisinin was significantly higher (1.30 ± 0.03 %) in shoots cultured on 5 μM IBA + P. indica compared to those of control (0.80 ± 0.01 %).  相似文献   

20.
Artemisinin, a natural sesquiterpenoid isolated from Artemisia annua L., is regarded as the most efficient drug against malaria in the world. Artemsinin production in NaCl-treated A. annua seedlings and its relationships with the glucose-6-phosphate dehydrogenase (G6PDH) activity and generation of H2O2 and nitric oxide (NO) were investigated. Results revealed that artemisinin content in the seedlings was increased by 79.3 % over the control after 1-month treatment with 68 mM NaCl. The G6PDH activity was enhanced in the presence of NaCl together with stimulated generation of H2O2 and NO. Application of 1.0 mM glucosamine (GlcN), an inhibitor of G6PDH, blocked the increase of NADPH oxidase and nitrate reductase (NR) activities, as well as H2O2 and NO production in A. annua seedlings under the salt stress. The induced H2O2 was found to be involved in the upgrading gene expression of two key enzymes in the later stage of artemisinin biosynthetic pathway: amorphadiene synthase (ADS) and amorpha-4,11-diene monooxygenase (CYP71AV1). The released NO being attributed mainly to the increase of NR activity, negatively interacted with H2O2 production and enhanced gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Inhibition of NO generation partly blocked NaCl-induced artemisinin accumulation, and NO donor strongly rescued the decreased content of artemisinin caused by GlcN. These results suggest that G6PDH could play a critical role in NaCl-induced responses and artemisinin biosynthesis in A. annua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号