首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The photosynthetic green bacterium Chlorobium limicola 6230 has been examined by freeze-fracture electron microscopy to investigate the size, form, distribution and supramolecular architecture of its chlorosomes (chlorobium vesicles) as well as the chlorosome attachment sites on the cytoplasmic membrane. The oblong chlorosomes that underlie the cytoplasmic membrane show a considerable variation in size from about 40 × 70 nm to 100 × 260 nm and exhibit no particular orientation. The chlorosome core, which appears to be hydrophobic in nature, contains between 10 and 30 rod-shaped elements (approx. 10 nm in diameter) surrounded by an unetchable matrix. The rod elements are closely packed and extend the full length of the chlorosome. Separating the chlorosome core from the cytoplasm is a approx. 3 nm thick lipid-like envelope layer, which exhibits no substructure. A 5–6 nm thick, crystalline baseplate connects the chlorosome to the cytoplasmic membrane. The ridges of the baseplate lattice make an angle of between 40° and 60° with the longitudinal axis of the chlorosome and have a repeating distance of approx. 6 nm. In addition, each ridge exhibits a granular substructure with a periodicity of approx. 3.3 nm. The cytoplasmic membrane regions adjacent to the baseplates are enriched in large (greater than 9 nm) intramembrane particles, most of which belong to approx. 10 nm and approx. 12.5 nm particle size categories. Each chlorosome attachment site contains between 20 and 30 very large (greater than 12.0 nm diameter) intramembrane particles.The following interpretive model of a chlorosome is discussed in terms of biophysical, biochemical and structural information reported by others: it is proposed that the bacteriochlorophyll c (BChl c; chlorobium chlorophyll) is located in the rod elements of the core and that it is complexed with specific proteins. The cytoplasm-associated envelope layer is depicted as consisting of a monolayer of galactosyl diacylglycerol molecules. BChl a-protein complexes in a planar lattice configuration most likely make up the crystalline baseplate. The greater than 12-nm particles in the chlorosome attachment sites of the cytoplasmic membrane, finally, may correspond to complexes containing a reaction center and non-crystalline light-harvesting BChl a. The crystalline nature of the baseplate is consistent with the notion that it serves two functions: besides transferring excitation energy to the reaction centers it could also function as a distributor of this energy amongst the reaction centers.  相似文献   

2.
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.  相似文献   

3.
Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.  相似文献   

4.
Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-l-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments.  相似文献   

5.
A series of spectroscopic measurements were performed on membrane fractions and detergent-solubilized complexes from the green sulfur bacterium (GSB) Chlorobaculum (Cba.) tepidum. The excitation migration through the entire GSB photosynthetic apparatus cannot be observed upon excitation of membranes in the chlorosome region at 77?K. In order to observe energy transfer from the Fenna-Matthews-Olson (FMO) protein to the reaction center (RC), FMO was directly excited at ~800?nm in transient absorption experiments. However, interpretation of the results is complicated by the spectral overlap between FMO and the RC. The availability of the Y16F FMO mutant, whose absorption spectrum is drastically different from that of the WT, has enabled the selection of spectral regions where either only FMO or the RC contributes. The application of a directed kinetic modeling approach, or target analysis, revealed the various decay and energy transfer pathways within the pigment-protein complexes. The calculated FMO-to-RC excitation energy transfer efficiencies are approximately 25% and 48% for the Y16F and WT samples, respectively.  相似文献   

6.

Main conclusion

MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.  相似文献   

7.
  1. The cellular content of galactolipids in Chlorobium and Chloroflexus is not related to bacteriochlorophyll content nor to the total amount of chlorosome material in the cells.
  2. Chlorosomes of both bacteria were agglutinated by Ricinus lectin and the agglutination was increased after treatment of the chlorosomes with trypsin.
  3. When cell free preparations of both bacteria were treated with trypsin prior to centrifugation on sucrose gradients, the resulting chlorosome fractions were less contaminated with material derived from the cytoplasmic membrane than when trypsin was not employed.
  相似文献   

8.
Freeze-fracture electron microscopy was used to study further the changes in chlorosome structure during the development of the photosynthetic apparatus in Chloroflexus aurantiacus J-10-fl. During development, in response to decreased light intensity or lower oxygen tension, the number of chlorosomes per cell increased. The same conditions also led to a general thickening of chlorosomes but did not affect their length or width. The thickening of the chlorosomes paralleled increases in the bacteriochlorophyll c/bacteriochlorophyll a ratio. Semiaerobic induction of the photosynthetic apparatus did not produce a synchronous assembly of chlorosomes in all cells of a given culture. Even adjacent cells of a single filament showed great variations in the rate and extent of response. Parallel appearance of (i) approximately 5-nm particles (in a lattice configuration) in the membrane attachment site, (ii) the crystalline baseplate material (with a periodicity of approximately 6 nm) adjacent to the membrane attachment site, and (iii) the chlorosome envelope layer preceded addition of longitudinally oriented, rodlike elements (diameter, congruent to 6 m) to the chlorosome core. It is estimated that each chlorosome can funnel energy into approximately 100 reaction centers. Chlorosomes could be isolated by a simple density gradient procedure only from cells grown at low light intensity. A bacteriochlorophyll a species absorbing at 790 nm was associated with isolated chlorosomes. Lithium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorosomes showed only a few low-molecular-weight polypeptides (less than 15,000).  相似文献   

9.
Chlorosomes, the main antenna complexes of green photosynthetic bacteria, were isolated from null mutants of Chlorobium tepidum, each of which lacked one enzyme involved in the biosynthesis of carotenoids. The effects of the altered carotenoid composition on the structure of the chlorosomes were studied by means of x-ray scattering and electron cryomicroscopy. The chlorosomes from each mutant strain exhibited a lamellar arrangement of the bacteriochlorophyll c aggregates, which are the major constituents of the chlorosome interior. However, the carotenoid content and composition had a pronounced effect on chlorosome biogenesis and structure. The results indicate that carotenoids with a sufficiently long conjugated system are important for the biogenesis of the chlorosome baseplate. Defects in the baseplate structure affected the shape of the chlorosomes and were correlated with differences in the arrangement of lamellae and spacing between the lamellar planes of bacteriochlorophyll aggregates. In addition, comparisons among the various mutants enabled refinement of the assignments of the x-ray scattering peaks. While the main scattering peaks come from the lamellar structure of bacteriochlorophyll c aggregates, some minor peaks may originate from the paracrystalline arrangement of CsmA in the baseplate.  相似文献   

10.
Shibata Y  Saga Y  Tamiaki H  Itoh S 《Biochemistry》2007,46(23):7062-7068
The polarization anisotropy of fluorescence from single chlorosomes isolated from a green filamentous bacterium, Chloroflexus aurantiacus, was measured using a confocal laser microscope at 13 K. Each single chlorosome that is floating in a frozen solvent exhibited strong polarization anisotropy of fluorescence. We calculated the degrees of fluorescence polarization for 51 floating single chlorosomes. The value ranged from 0.1 to 0.76 for the BChl-c aggregate in the core chlorosomes and from 0 to 0.4 for the energy acceptor BChl-a in the baseplate protein in the outer membrane. The shifts in polarization angles between the two emission bands were distributed over all the possible values with a sharp peak around 90 degrees , suggesting the perpendicular orientation between the transition dipoles of the fluorescence emission from the BChl-c aggregate and that from BChl-a. A simulation assuming a random orientation of chlorosomes reproduced the experimental results exactly. The analysis further indicated the appreciable contribution of the transition dipole of BChl-c that has an orientation perpendicular to the major polarization axis in each chlorosome. Small values of the degrees of polarization implied the BChl-a transition dipole to be somewhat tilted with respect to the normal of the cytoplasmic membrane to which chlorosomes are attached. These conclusions can be obtained only by observing the fluorescence of single chlorosomes.  相似文献   

11.
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome—the light-absorbing antenna complex—in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.  相似文献   

12.
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome—the light-absorbing antenna complex—in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.  相似文献   

13.
《FEBS letters》1986,199(2):234-236
The direction of the transition moments of chlorosome pigments in chromatophores of the green photosynthetic bacterium Chlorobium limicola was studied by linear dichroism. Orientation of chromatophores was achieved by stretching a polyacrylamide gel in which they were packed. It was shown that in each individual chromatophore the Qy transition moment vectors of the whole chlorosome bacterioviridin are parallel to each other and are practically ideally oriented along the chlorosome long axis. The exact value of the angle α between the bacterioviridin transition moments and the long axis of the chlorosome is calculated to be α = 0°, the mean square deviation being 7°.  相似文献   

14.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane.  相似文献   

15.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

16.
In contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in a recently discovered aerobic phototroph. Chlorosomes are the only antenna system, in which the major light-harvesting pigments are organized in self-assembled supramolecular aggregates rather than on protein scaffolds. This unique feature is believed to explain why some green bacteria are able to carry out photosynthesis at very low light intensities. Encasing the chlorosome pigments is a protein-lipid monolayer including an additional antenna complex: the baseplate, a two-dimensional paracrystalline structure containing the chlorosome protein CsmA and bacteriochlorophyll a (BChl a). In this article, we review current knowledge of the baseplate antenna complex, which physically and functionally connects the chlorosome pigments to the reaction centers via the Fenna–Matthews–Olson protein, with special emphasis on the well-studied green sulfur bacterium Chlorobaculum tepidum (previously Chlorobium tepidum). A possible role for the baseplate in the biogenesis of chlorosomes is discussed. In the final part, we present a structural model of the baseplate through combination of a recent NMR structure of CsmA and simulation of circular dichroism and optical spectra for the CsmA–BChl a complex.  相似文献   

17.
We present a molecular-scale model of Bacteriochlorophyll a (BChl a) binding to the chlorosome protein A (CsmA) of Chlorobaculum tepidum, and the aggregated pigment–protein dimer, as determined from protein–ligand docking and quantum chemistry calculations. Our calculations provide strong evidence that the BChl a molecule is coordinated to the His25 residue of CsmA, with the magnesium center of the bacteriochlorin ring situated <3 Å from the imidazole nitrogen atom of the histidine sidechain, and the phytyl tail aligned along the nonpolar residues of the α-helix of CsmA. We also confirm that the Q y band in the absorption spectra of BChl a experiences a large (+16 to +43 nm) redshift when aggregated with another BChl a molecule in the CsmA dimer, compared to the BChl a in solvent; this redshift has been previously established by experimental researchers. We propose that our model of the BChl a–CsmA binding motif, where the dimer contains parallel aligned N-terminal regions, serves as the smallest repeating unit in a larger model of the para-crystalline chlorosome baseplate protein.  相似文献   

18.
Continuous cultures of Chloroflexus aurantiacus were cultivated in a chemostat in the light with varying bacteriochlorophyll (BChl) a/c ratios by changing the growth rate. Under these culture conditions all cells were homogeneously and reproducibly equipped with chlorosomes. In order to determine the number and size of chlorosomes in relation to different BChl contents morphometric measurements were performed on electron micrographs. The linear increase of BChl a contents coincided with an increasing number of chlorosomes per membrane area and per bacterium rather than with an enlargement of the average size of chlorosomes. The numbers of chlorosomes and therefore the percentage of chlorosome-covered cytoplasmic membrane increased linearly with increasing BChl a contents. The average size of the baseplates was largely constant in all cultures (mean 3,222±836 nm2). However, within individual cells the size of baseplates varied by a factor of 3.0, especially by the variation of the length. The exponential increase in BChl c contents coincided with an increasing number of chlorosomes (up to a factor of 2.3) and an enlargement of the average chlorosome volume (up to a factor of 1.9). The number of BChl a molecules per chlorosome was about 1,484±165, thus the number of reaction centers per chlorosome was 58±12. The data suggest, firstly, that BChl a is confined to areas (cytoplasmic membrane plus baseplate) as represented by the chlorosome attachment sites; secondly, that the degree of packing of BChl c molecules within chlorosomes increases with increasing BChl c contents.  相似文献   

19.
The photosynthetic membrane in purple bacteria contains several pigment–protein complexes that assure light capture and establishment of the chemiosmotic gradient. The bioenergetic tasks of the photosynthetic membrane require the strong interaction between these various complexes. In the present work, we acquired the first images of the native outer membrane architecture and the supramolecular organization of the photosynthetic apparatus in vesicular chromatophores of Rhodobacter (Rb.) veldkampii. Mixed with LH2 (light-harvesting complex 2) rings, the PufX-containing LH1–RC (light-harvesting complex 1 – reaction center) core complexes appear as C-shaped monomers, with random orientations in the photosynthetic membrane. Within the LH1 fence surrounding the RC, a remarkable gap that is probably occupied (or partially occupied) by PufX is visualized. Sequence alignment revealed that one specific region in PufX may be essential for PufX-induced core dimerization. In this region of ten amino acids in length all Rhodobacter species had five conserved amino acids, with the exception of Rb. veldkampii. Our findings provide direct evidence that the presence of PufX in Rb. veldkampii does not directly govern the dimerization of LH1–RC core complexes in the native membrane. It is indicated, furthermore, that the high membrane curvature of Rb. veldkampii chromatophores (Rb. veldkampii features equally small vesicular chromatophores alike Rb. sphaeroides) is not due to membrane bending induced by dimeric RC–LH1–PufX cores, as it has been proposed in Rb. sphaeroides.  相似文献   

20.
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI–LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI–LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI–LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI–LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~?12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~?675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号