首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:分离芜菁叶片原生质体,建立蛋白质在芜菁原生质体的瞬时表达系统。方法:以津田芜菁成叶为试材,酶解分离原生质体;通过PEG介导的转化,将编码绿色荧光蛋白(GFP)的瞬时表达载体转入原生质体中,用激光扫描共聚焦显微镜检测原生质体中GFP的表达情况。结果:分离出大量的津田芜菁原生质体,并获得了较高的转化效率,GFP在整个原生质体中都有表达。结论:建立了津田芜菁原生质体瞬时表达系统。  相似文献   

2.
雷公藤悬浮细胞原生质体的制备及瞬时转化体系的建立   总被引:1,自引:0,他引:1  
胡添源  王睿  陈上  马宝伟  高伟 《植物学报》2017,52(6):774-782
为探索药用植物雷公藤(Tripterygium wilfordii)悬浮细胞原生质体提取的最优条件,并建立雷公藤原生质体瞬时转化体系,以雷公藤悬浮细胞为材料,对酶解液配比、酶解时间、甘露醇浓度及处理转速进行考察。用PEG介导的瞬时转化法将外源基因转化到雷公藤原生质体中。结果表明,以雷公藤悬浮细胞为材料提取原生质体的最佳条件是酶液配比为2.0%纤维素酶+0.5%果胶酶+0.5%离析酶,甘露醇浓度为0.6 mol·L–1,酶解10小时,处理转速为67×g;用PEG介导法将含有编码GFP的植物表达载体转化雷公藤悬浮细胞原生质体,激光共聚焦扫描显微镜下细胞显示绿色荧光。通过实验筛选得到雷公藤悬浮细胞原生质体的最佳提取条件,建立了雷公藤悬浮细胞原生质体的瞬时转化体系,为进一步开展雷公藤功能基因及合成生物学研究奠定了基础。  相似文献   

3.
Miao Y  Jiang L 《Nature protocols》2007,2(10):2348-2353
Transient expression of fluorescent fusion proteins in plant cells has dramatically facilitated our study of newly identified genes and proteins. This protocol details an in vivo transient expression system to study the subcellular localization and dynamic associations of plant proteins using protoplasts freshly prepared from Arabidopsis or tobacco BY-2 suspension cultured cells. The method relies on the transformation of DNA constructs into protoplasts via electroporation. The whole protocol is comprised of three major stages: protoplast generation and purification, transformation of DNA into protoplasts via electroporation and incubation of protoplasts for protein analysis. Similar to stably transformed cell lines, transformed protoplasts are compatible with protein localization studies, pharmaceutical drug treatment and western blot analysis. This protocol can be completed within 11-24 h from protoplast production to protein detection.  相似文献   

4.
The efficiency of transient gene expression in plants credibly demonstrated characteristics of gene functions in numerous studies. Two key strategies of transient expression became favorites among researchers: protoplast transfection and agroinfiltration. Each of them, alongside the advantages, has its own constraints. In this work, an easy, rapid, and reliable system for characterization of the signal sequences and determinations of target protein localization in a plant cell is proposed and tested. This system—called the AgI–PrI—implies production of protoplasts from plant tissues after agroinfiltration. Reliability of the proposed system for transient gene expression has been proved using characterized signal sequences in Nicotiana benthamiana cells. The corresponding protocol is less expensive and depends to a lesser degree on the professional skills in the area of protoplast isolation and transfection; furthermore, it may be applicable to other plant species with either available efficient methods of agroinfiltration and protoplast isolation or with the potential for one of the protocols to be supplemented. Thus, the AgI–PrI technique makes it possible to combine the advantages of two widely used methods for the transient gene expression in plants—agroinfiltration and protoplast isolation and transfection—and concurrently avoids their critical points.  相似文献   

5.
Transient expression for functional gene analysis using Populus protoplasts   总被引:1,自引:0,他引:1  
Despite the availability of the Populus genome sequence and the development of genetic, genomic, and transgenic approaches for its improvement, the lengthy life span of Populus and the cumbersome process required for its transformation have impeded rapid characterization of gene functions in Populus. Protoplasts provide a versatile and physiologically relevant cell system for high-throughput analysis and functional characterization of plant genes. Here, a highly efficient transient expression system using Populus mesophyll protoplasts was developed based on the following three steps. The first step involved formulating a new enzyme cocktail containing 2 % Cellulase C2605 and 0.5 % Pectinase P2611, which was shown to enable efficient large-scale isolation of homogenous Populus mesophyll protoplasts. The second step involved optimization of transfection conditions, such as the polyethylene glycol concentration and amount of plasmid DNA to ensure a >80 % transfection efficiency for Populus protoplasts. The third step involved using the Populus protoplast transient expression system to successfully determine the subcellular localizations of proteins, emulate signaling events during pathogen infection, and prepare protein extracts for Western blotting and protein–protein interaction assays. This rapid and highly efficient transient gene expression system in Populus mesophyll protoplasts will facilitate the rapid identification of gene functions and elucidation of signaling pathways in Populus.  相似文献   

6.
Both the stage of the growth cycle and the age of the cell culture used to isolate protoplasts had a pronounced effect on both transient and stable expression of the GUS gene. A level of GUS gene transient expression of 9000 pmol 4MU/μg protein/h and a frequency of GUS gene stable expression of 5.72% were obtained with protoplasts isolated from suspension cultures 10–20 weeks after initiation and 3–4 days after subculturing when an optimized transformation protocol and a rice actin 1 promoter-uidA gene construct were used. The effect of the cell growth cycle on GUS gene transient expression was closely correlated with the growth rate and the rate of protein synthesis in cell cultures whereas prolonged subculturing of the cells resulted in a gradual decline in both transient and stable expression. The length of time cells were digested in cell wall digestion enzyme and the osmolarity of the transformation medium were found to critically affect both the level of transient and stable GUS gene expression. The composition and osmolarity of the protoplast culture medium was less critical for transient GUS gene expression although the osmolarity of the medium was shown to have a significant effect on stable expression of the GUS gene.  相似文献   

7.
Although transient gene expression using reporters such as green fluorescent protein is a versatile tool for examining gene functions and intracellular protein trafficking, the establishment of a highly efficient gene manipulation method remains a challenge in many plant species. A reliable transformation protocol has not yet been established for the three single-cell C4 species, despite their potential of serving as model systems for their extraordinary C4 photosynthetic metabolism. We report the first protocol optimized for isolating a large-scale and homogenous population of protoplasts from chlorenchyma cells of the single-cell C4 species Bienertia sinuspersici. Cytochemical staining confirmed the preservation of the unusual subcellular compartmentation of organelles in chlorenchyma cells after cell wall digestion. Approximately 84% of isolated protoplasts expressed the reporter fluorescent protein following our optimized polyethylene glycol-mediated transfection procedures. Fluorescent fusion protein tagged with various intracellular sorting signals demonstrated potential use of the transient gene expression system in subcellular protein localization and organelle dynamics studies. Further applications of the current protoplast isolation and transfection techniques in understanding the novel single-cell C4 photosynthetic mechanism are discussed.  相似文献   

8.
Transient assay systems using protoplasts have been utilized in several plant species and are a powerful tool for rapid functional gene analysis and biochemical manipulations. A protoplast system has not been used in switchgrass (Panicum virgatum L.), even though it is a bioenergy crop that has received considerable attention. Here we report the first protocol to isolate large numbers of viable protoplasts from both leaves and roots of two switchgrass genotypes. Furthermore, we demonstrate transient expression of PEG-mediated DNA uptake in the isolated protoplasts by measuring the activity of beta-glucuronidase (GUS) reporter gene driven by either the Cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin 1 promoter. Protoplast transformation with either the 35S or the ubiquitin promoter resulted in an increase in GUS activity compared to the untransformed controls; however, the extent of GUS activity was considerably higher for the ubiquitin promoter than for the 35S promoter. Collectively, our results indicate an efficient protoplast isolation and transient assay system that can be used to facilitate gene expression studies in switchgrass.  相似文献   

9.
Transient gene expression systems using protoplasts have been widely used for rapid functional characterization of genes in many plant species. Brachypodium distachyon has recently been employed as a model plant for studies on biofuel grass species and grass crops because of its small genome size, short life-span, and availability of efficient transformation systems. Here, we report the an efficient protocol for the preparation of leaf mesophyll protoplasts from Brachypodium seedlings. We also modified the polyethylene glycol (PEG)-mediated transformation procedure to optimize experimental conditions, such as duration of enzyme digestion, PEG incubation time, and plasmid DNA concentration and size. The green fluorescence protein (GFP)- and ??-glucuronidase (GUS)-coding genes were used as reporters to evaluate the feasibility of this transient expression system. We found that the yield of viable protoplasts was highest after 3 h of enzymatic digestion. Viability of enzyme-digested protoplasts was moderately maintained up to 24 h in Mmg preincubation solution. In addition, the highest transient expression of reporter genes was obtained when protoplasts were transformed with 20 ??g of plasmid DNA and incubated for 16 h. Together with the recent completion of the Brachypodium genome sequence, the Brachypodium transient expression system using leaf mesophyll protoplasts can be widely used for cellular, molecular, and biochemical studies of genes involved in carbon metabolism and signaling pathways mediating intrinsic and environmental cues.  相似文献   

10.
Polyethylene glycol (PEG)-mediated transient gene expression and silencing in protoplasts is widely applied in model plants such as Arabidopsis thaliana and rice. Here, we developed an efficient transient gene expression system based on the PEG-mediated method both in etiolated and green maize mesophyll protoplasts. The results showed that both yellow fluorescent protein encoding gene and glucuronidase encoding gene were efficiently expressed in maize protoplasts. More importantly, double-stranded RNAs (dsRNAs) can also be transfected into maize protoplasts by the PEG-mediated method to specifically silence exogenous and endogenous genes. Our results showed that dsRNA can be used to knockdown both exogenous and endogenous gene expression. Furthermore, bimolecular fluorescence complementation system for the detection of protein–protein interactions in maize protoplasts was developed. We also overexpressed and knockdowned the mitogen-activated protein kinase encoding gene ZmMPK5 to investigate the role of ZmMPK5 in abscisic acid (ABA)-induced antioxidant defense in maize protoplasts. This method here we reported will be valuable for signal transduction study in maize.  相似文献   

11.

Background

Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function.

Methodology/Principal Findings

We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events.

Conclusions/Significance

This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.  相似文献   

12.
13.
郭萍  武瑶  李嘉  方荣祥  贾燕涛 《生物工程学报》2014,30(11):1751-1762
与转基因方法相比,基因瞬时表达系统在基因表达研究上具有快速便捷的特点。为检验水稻mi RNA与靶标基因之间的调控关系,将MIRNA基因与GFP/靶标序列融合基因(或GFP/靶标突变序列融合基因)构建在同一瞬时表达载体上,并转化水稻原生质体,通过观察含有GFP/靶标序列融合基因和GFP/靶标突变序列融合基因的载体之间的荧光强度差异,以及通过q RT-PCR方法检测靶标和非靶标m RNA水平差异来验证mi RNA对靶标基因的调控。用osa MIR156和osa MIR397及其靶标序列对实验设计方法进行验证,荧光显微观察和q RT-PCR检测证明,osami R156和osami R397能降低相应靶标序列GFP融合基因的转录物水平和GFP荧光水平。此种水稻原生质体瞬时表达方法用于在体内进行大规模mi RNA靶标基因检测。由于其他近缘单子叶植物很可能与水稻有近似的小RNA加工系统,因此对于其他单子叶植物mi RNA功能研究也将有很好的应用前景。  相似文献   

14.
植物原生质体广泛应用于植物基因功能研究中,包括瞬时基因表达、亚细胞定位、蛋白互作和蛋白活性分析等。当前,小麦基因的亚细胞定位和功能分析,大多利用模式植物拟南芥等异源的原生质体,易于造成研究结果的不准确。为避免这种情况,小麦原生质体制备及高效转化体系的建立与应用是必需的。在PEG介导的小麦原生质体转化过程中,原生质体分泌的核酸酶大量降解质粒DNA,转化效率的提高因此受到阻碍。为了建立小麦原生质体的高效转化体系,本文测试了抑制胞外核酸酶活性的因素和提高质粒DNA浓度等多个条件对转化效率的影响。结果表明,转化过程中加入双倍用量的质粒DNA进行转化,且始终保持低温环境(1℃)用以抑制核酸酶酶活性,可以使小麦原生质体的转化效率提高至85%。本文还将该系统成功地应用于2个小麦抗病相关蛋白的亚细胞定位研究,证明了该系统的高效性和实用性。该研究对未来相关研究有一定参考价值。  相似文献   

15.
Yoo SD  Cho YH  Sheen J 《Nature protocols》2007,2(7):1565-1572
The transient gene expression system using Arabidopsis mesophyll protoplasts has proven an important and versatile tool for conducting cell-based experiments using molecular, cellular, biochemical, genetic, genomic and proteomic approaches to analyze the functions of diverse signaling pathways and cellular machineries. A well-established protocol that has been extensively tested and applied in numerous experiments is presented here. The method includes protoplast isolation, PEG-calcium transfection of plasmid DNA and protoplast culture. Physiological responses and high-throughput capability enable facile and cost-effective explorations as well as hypothesis-driven tests. The protoplast isolation and DNA transfection procedures take 6-8 h, and the results can be obtained in 2-24 h. The cell system offers reliable guidelines for further comprehensive analysis of complex regulatory mechanisms in whole-plant physiology, immunity, growth and development.  相似文献   

16.
Many applications of cereal protoplast culture systems are still limited by the difficulties of regeneration from suspension cells which are the usual protoplast source. The objective of the present study therefore was to investigate the conditions for the development of a culture system for protoplasts capable of plant regeneration isolated directly from immmature scutella of barley. The procedure developed involves a two-stage pre-culture of scutellar tissue, followed by vacuum infiltration with cell wall degrading enzymes and the culture of alginate-embedded protoplasts. The pre-culture of the scutella and the co-cultivation of protoplasts with nurse cells were the most important factors for the success of the culture system, but several other parameters affecting protoplast yield, viability and sustained division were identified, including the developmental stage of the embryo, the use of cold conditioning periods during pre-culture, the composition of the pre-culture and protoplast culture medium, and the embedding matrix. Protoplasts isolated from scutellar tissues of barley cvs Dissa, Clipper, Derkado and Puffin were capable of sustained division in culture. Macroscopic protoplast-derived tissues were obtained in all cultivars, except ev. Puffin, and fertile plants were regenerated from cvs Dissa and Clipper 3–4 months after protoplast isolation. The procedure described provides a novel approach for the isolation of totipotent protoplasts in barley which avoids the need for suspension cultures.  相似文献   

17.
Transient Gene Expression in Intact and Organized Rice Tissues   总被引:7,自引:2,他引:5       下载免费PDF全文
Regulated gene expression of chimeric genes has been studied extensively in electroporated protoplasts. The applicability of these assays is limited, however, because protoplasts are not always physiologically identical to the cells from which they are derived. We have developed a procedure to electroporate DNA into intact and organized leaf structures of rice. Optimization of the new gene delivery system mainly involved eliminating explant-released nucleases, prolonging the DNA/explant incubation time, and expanding the pulse time. Using a [beta]-glucuronidase gene under the control of constitutive promoters, we demonstrated that all cell types within a leaf base were susceptible to electroporation-mediated DNA uptake. Although the technique was initially developed for leaf bases of young etiolated rice seedlings, we proved that it was equally applicable both to other monocotyledons, including wheat, maize, and barley, and to other explants, such as etiolated and green sheath and lamina tissues from rice. Transient gene expression assays with electroporated leaf bases showed that the promoter from a pea light-harvesting chlorophyll a/b-binding protein gene displayed both light- and chloroplast-dependent expression in rice, and that the promoter from the Arabidopsis S-adenosylmethionine synthetase gene was, as in transgenic Arabidopsis and tobacco, preferentially expressed in cells surrounding the vascular bundles.  相似文献   

18.
The subunit III of photosystem I and ferredoxin-NADP(+)-oxidoreductase are encoded by nuclear genes, namely psaF and petH. The activity of their promoters from spinach has been evaluated in transgenic tobacco earlier. Evaluation of the activity of these Dicotyledoneae-specific promoters has been carried out in a monocot system (i.e. rice) by transient gene expression system, based on electroporation-mediated gene delivery into protoplasts from leaves and roots. It has been found that various promoter deletions show higher activity in leaf protoplasts and elements for quantitative response are widely distributed. Transgenic rice has also been produced with a petH promoter and gus reporter gene construct. Although petH promoter is a weak promoter in comparison to the 35S promoter, it expresses well in green tissues and could be useful for plant genetic engineering.  相似文献   

19.
A method was developed for culturing protoplasts freshly isolated from developing soybean (Glycine max L.) cotyledons. First cell divisions were observed within 5 days after protoplast isolation and microcalli, consisting of about 20 cells, were formed within 10 days. Thirty days after protoplast isolation, callus tissues were observed without the aid of a microscope. A 30 to 50% plating efficiency was consistently obtained. Using a polyethylene glycol-electroporation technique, DNA was introduced into these protoplasts. The protoplasts were then cultured to form callus. Chloramphenicol acetyltransferase (CAT) activity was detected in protoplast cultures 6 hours after introduction of a 35S-CAT-nopaline synthase 3′ chimeric gene. The highest CAT activity was detected in 3-day-old electroporated protoplast cultures, indicating transient expression of the introduced gene. Some CAT activity was detected in 40-day-old callus cultures and in geneticin (G418) selected callus tissues which also received a chimeric neomycin phosphotransferase II gene, indicating the presence of stable transformants. A control chimeric gene with an inverted 35S promoter failed to produce any CAT activity in this system.  相似文献   

20.
一种快速高效的水稻原生质体制备和转化方法的建立   总被引:2,自引:0,他引:2  
在模式植物拟南芥中,原生质体瞬时表达技术已被广泛地应用到功能基因组学的研究中,但水稻原生质体因其制备过程相对繁琐,转化效率偏低,尚未在基因功能研究中获得广泛应用。本研究在拟南芥原生质体制备和转化的基础之上,对水稻原生质体的制备和转化方法进行改良优化。以水稻幼茎为起始材料,采用纤维素酶R-10和果胶酶R-10,对水稻组织进行消化并利用蔗糖密度梯度自沉降的方法分离原生质体,获得了高纯度的原生质体。对质粒转化原生质体时的转化方法、转化时间及质粒浓度进行探索,在缩短原生质体分离时间的同时,大大提高了转化效率。用较少量的质粒DNA即可获得外源基因在原生质体内高效的表达,且转化效率可达70%。我们建立的这种快速有效的水稻原生质体制备和转化方法,可为水稻功能基因组学研究提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号