首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A series of underivatized sulfoglycolipids (SM4g, lyso-SM4g, SM4s, SM3, SM2, SB2, and SB1a) from various tissues were analyzed by both positive (POS-SI-MS) and negative (NEG-SI-MS) secondary ion mass spectrometry. By POS-SI-MS were detected the molecular ions of sulfoglycolipids in the form with sodium or potassium together with some fragment ions useful for the carbohydrate sequence determination. The analysis of monosulfogangliotriaosyl- or monosulfogangliotetraosylceramide and bis-sulfoglycolipid was difficult due to noise in the high mass region. On the other hand, NEG-SI-MS of sulfoglycolipids gave more intense signals from molecular ion of (M-H)- for monosulfoglycolipids and [M-H+Na)-H)- for bis-sulfoglycolipid. Many fragment ions useful for the elucidation of the carbohydrate sequences were also obtained with significant intensities. The fragmentation was assessed to occur at the glycosidic linkages to form ions of the oligosaccharides with or without ceramide. These ions were useful for sugar sequencing and also for distinguishing the differences in the position of the sulfate group. The intensities of saccharide ions without sulfate were lower than those with sulfates. In the case of SB2 and SB1a, containing 2 mol of sulfate ester groups, the molecular ion was detected as [M-H+Na)-H)-. Also, fragment ions with 2 mol of sulfate were detected as the sodium-additive form. It was concluded that NEG-SI-MS is a very useful technique for the structural elucidation of higher sulfoglycolipids.  相似文献   

2.
In the paper, we propose a method for estimation of the mean molecular weight of lipopolysaccharide, which is important for accuracy of endotoxin activity investigation. In our study, it was assumed that lipid A portion in Enterobacterial lipopolysaccharide is substituted by four 3-hydroxytetradecanoic acid residues. Lipopolysaccharides of S, Ra, Rc and Re chemotypes being laboratory preparations as well as purchased from Sigma were investigated. Fatty acids were determined by of gas chromatography as methyl esters according to the procedure described by Wollenweber and Rietschel. Mean molecular weight was calculated by the formula: MMW = [formula: see text]. A high agreement between the estimated and the theoretical molecular weight values was demonstrated in the case of Salmonella minnesota R595 (Re) LPS preparation. As expected, LPS heterogeneity increase together with enlargement of polysaccharide chain length which is visible in electrophoregrams also. Except for LPS mean molecular weight estimation, the method allows its detection in various preparations and samples, distinguishing of R and S LPS forms as well as the determination of mean length of O-specific chain in lipopolysaccharides which structures are known.  相似文献   

3.
Serospecific antigens of Legionella pneumophila.   总被引:13,自引:4,他引:9       下载免费PDF全文
Serospecific antigens isolated by EDTA extraction from four serogroups of Legionella pneumophila were analyzed for their chemical composition, molecular heterogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunological properties. The antigens were shown to be lipopolysaccharides and to differ from the lipopolysaccharides of other gram-negative bacteria. The serospecific antigens contained rhamnose, mannose, glucosamine, and two unidentified sugars together with 2-keto-3-deoxyoctonate, phosphate, and fatty acids. The fatty acid composition was predominantly branched-chain acids with smaller amounts of 3-hydroxymyristic acid. The antigens contain periodate-sensitive groups; mannosyl residues were completely cleaved by periodate oxidation. Hydrolysis of the total lipopolysaccharide by acetic acid resulted in the separation of a lipid A-like material that cross-reacted with the antiserum to lipid A from Salmonella minnesota but did not comigrate with it on sodium dodecyl sulfate gels. None of the four antigens contained heptose. All of the antigen preparations showed endotoxicity when tested by the Limulus amebocyte lysate assay. The results of this study indicate that the serogroup-specific antigens of L. pneumophila are lipopolysaccharides containing an unusual lipid A and core structure and different from those of other gram-negative bacteria.  相似文献   

4.
Lipopolysaccharides of different wild-type and mutant gram-negative bacteria, as well as synthetic and bacterial free lipid A, were studied for their ability to activate arachidonic acid metabolism in mouse peritoneal macrophages in vitro. It was found that lipopolysaccharides of deep-rough mutants of Salmonella minnesota and Escherichia coli (Re to Rc chemotypes) stimulated macrophages to release significant amounts of leukotriene C4 (LTC4) and prostaglandin E2 (PGE2). Lipopolysaccharides of wild-type strains (S. abortus equi, S. friedenau) only induced PGE2 and not LTC4 formation. Unexpectedly, free bacterial and synthetic E. coli lipid A were only weak inducers of LTC4 and PGE2 production. Deacylated Re-mutant lipopolysaccharide preparations were inactive. However, co-incubation of macrophages with both deacylated lipopolysaccharide and lipid A lead to the release of significant amounts of LTC4 and PGE2, similar to those obtained with Re-mutant lipopolysaccharide. The significance of the lipid A portion of lipopolysaccharide for the induction of LTC4 was indicated by demonstrating that peritoneal macrophages of endotoxin-low-responder mice or of mice rendered tolerant to endotoxin did not respond with the release of arachidonic acid metabolites on stimulation with Re-mutant lipopolysaccharide and that polymyxin B prevented the Re-lipopolysaccharide-induced LTC4 and PGE2 release. Physical measurements showed that the phase-transition temperatures of both free lipid A and S-form lipopolysaccharide were above 37 degrees C while those of R-mutant lipopolysaccharides were significantly lower (30-35 degrees C). Thus, with the materials investigated, an inverse relationship between the phase-transition temperature and the capacity to elicit LTC4 production was revealed.  相似文献   

5.
Applicability of negative ion fast atom bombardment (FAB)-tandem mass spectrometry (MS/MS) was examined in trace mixture analyses and structural assignments of some isoprenoid diphosphates. Negative ion FAB-MS spectra using a glycerol matrix of these isoprenoid diphosphates showed predominantly molecular ions (M-H)- together with fragment ions at m/z 177 (H3P2O7)-, 176 (H2P2O7)-, 159 (HP2O6)-, and 79 (PO3)- which were characteristic of the diphosphate ester moiety. The molecular ions did not overlap with peaks arising from any impurities even when crude sample such as butanol extracts from enzymatic reaction mixtures were directly analyzed without any purification. Moreover, collisionally activated dissociation spectra of the molecular ion showed many structurally significant fragment ions which enabled us to elucidate the structures of such irregular alkyl chain moieties as those having a homoisoprenoid skeleton or substituted structures. These studies indicate that negative ion FAB-MS/MS is a simple and useful technique for trace mixture analysis and structure elucidation of isoprenoid diphosphates.  相似文献   

6.
Four isomers of epoxyeicosatrienoic acid (EET) can be formed by cytochrome P-450 oxidation of arachidonic acid: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. The collision-induced dissociation of the [M-H]- anion at m/z 319 from each of these isomers, using negative-ion fast atom bombardment ionization and a triple quadrupole mass spectrometer, resulted in a series of common ions as well as ions characteristic of each isomer. The common ions were m/z 301 [M-H2O]- and 257 [M-(H2O + CO2)]-. Unique ions resulted from cleavages alpha to the epoxide moiety to form either conjugated carbanions or aldehydes. Mechanisms involving charge site transfer are suggested for the origin of these ions. A distonic ion series that may involve a charge-remote fragmentation mechanism was also observed. The epoxyeicosatrienoic acids were also incorporated into cellular phospholipids following incubation of the free acid with murine mast cells in culture. Negative fast atom bombardment mass spectrometry of purified glycerophosphoethanolamine-EET species and glycerophosphocholine-EET species yielded abundant [M-H]- and [M-CH3]- ions, respectively. The collision-induced dissociation of these specific high-mass ions revealed fragment ions characteristic of the epoxyeicosatrienoic acids incorporated (m/z 319, 301, and 257) and the same unique ions as those seen with each isomeric epoxyeicosatrienoic acid. With this direct method of analysis, phospholipids containing the four positional isomers of EET, including the highly labile (5,6-EET), could be identified as unique molecular species in mast cells incubated with EET.  相似文献   

7.
In the present paper laser desorption mass spectrometry (LDMS) was applied to dephosphorylated free lipid A preparations obtained from lipopolysaccharides of Re mutants of Salmonella minnesota, Escherichia coli and Proteus mirabilis. The purpose of this study was to elucidate the location of (R)-3-hydroxytetradecanoic acid and 3-O-acylated (R)-3-hydroxytetradecanoic acid residues which are bound to amino and hydroxyl groups of the glucosamine disaccharide backbone of lipid A. Based on the previous finding from biochemical analyses that the amino group of the nonreducing glucosamine residue (GlcN II) of the backbone carries, in S. minnesota and E. coli, 3-dodecanoyloxytetradecanoic acid and, in P. mirabilis, 3-tetradecanoyloxytetradecanoic acid, a self-consistent interpretation of the LDMS was possible. It was found that: (a) in all three lipids A GlcN II is, besides the amide-linked 3-acyloxyacyl residue, substituted by ester-linked 3-tetradecanoyloxytetradecanoic acid; (b) the reducing glucosamine (GlcN I) is substituted by ester-linked 3-hydroxytetradecanoic acid; (c) the amino group of GlcN I carries a 3-hydroxytetradecanoic acid which is non-acylated in E. coli and which is partially acylated by hexadecanoic acid in S. minnesota and P. mirabilis. In lipids A which were obtained from the P. mirabilis Re mutant grown at low temperature (12 degrees C) LDMS analysis revealed that specifically the one fatty acid bound to the 3-hydroxyl group of amide-linked 3-hydroxytetra-decanoic acid at GlcN II is positionally replaced by delta 9-hexadecenoic acid (palmitoleic acid). It appears, therefore, that enterobacterial lipids A resemble each other in that the 3-hydroxyl groups of the two 3-hydroxytetradecanoic acid residues linked to GlcN II are fully acylated, while those of the two 3-hydroxytetradecanoic acid groups attached to GlcN I are free or only partially substituted.  相似文献   

8.
The alteration of hepatic drug-metabolizing enzyme activities in mice given Salmonella endotoxin by single or multiple intraperitoneal injections was investigated. An essentially the same biphasic, early and late phase, endotoxin tolerance was observed in the animals receiving a single injection of endotoxin or repetitive daily injections. The results of reciprocal cross tolerance tests using lipopolysaccharide and free lipid A preparations derived from Salmonella minnesota, Salmonella typhimurium, E. coli, Pseudomonas aeruginosa, and Chromobacterium violaceum suggested that lipid A moiety plays an important role in the induction of early endotoxin tolerance to endotoxin response.  相似文献   

9.
An analysis of which component of lipopolysaccharides (LPS), the lipid or the polysaccharide (PS), is active in stimulating the murine granulopoietic system has been performed. LPS with different structures, isolated from different mutant strains of Salmonella and chemical degradation products of lipopolysaccharides have been used. Lipid A obtained by acid hydrolysys of the LPS and complexed to bovine serum albumin (BSA) (lipid A-BSA) was shown to be active in generating serum colony stimulating factor (CSF) and in increasing the splenic colony forming cells (CFC) levels, although it was less active than the parent LPS. The polysaccharide (PS) showed no significant activity at the concentrations used. LPS (glycolipids) from R mutants of Salmonella minnesota were active to the same extent as the LPS. The fact that even the most defective LPS from the R mutant R595 which contains lipid A and KDO only is a potent endotoxin, points unequivocally, to lipid A, as the active principle in stimulating the granulopoietic system.  相似文献   

10.
Fast atom bombardment is shown to produce useful spectra of the three phosphoinositides and the metabolically related phospholipids, lysophosphatidylinositol and phosphatidic acid. Analysis of the [M-H]- ions for fatty ester composition by mass-analysed ion kinetic energy spectra (MIKES) is shown to be inadequate to resolve fatty acyl daughter ions when the parent ion contains isobaric species. However, analysis on a triple sector instrument with and without collisional activation does provide complete compositional information. Quantitative analysis of the fatty ester content of each lipid molecular species is complicated by dissimilar ion yields from fatty acyl-bearing fragments from compositionally different parent ions.  相似文献   

11.
Inhibitory effects of the endotoxic glycolipid from Salmonella minnesota R595 on hepatic drug-metabolizing enzyme activities in mice were investigated, and the depressor activity of the glycolipid in the enzyme systems was confirmed. Among degradation products of lipopolysaccharides tested, lipid A preparations derived from the mild acetic acid hydrolysates of lipopolysaccharides were the most active, but the lipid A fractions prepared from the hydrolysates with 1 N-HCl were almost inactive. A degraded polysaccharide fraction from E. coli lipopolysaccharide was inactive. The activities of the glycolipid and the lipid A preparation were markedly reduced by treatment with alkaline-hydroxylamine, mild alkali or hydrazine. The data showed that the lipid A moiety of the glycolipid may be responsible for the inhibitory activity on the hepatic drug-metabolizing enzyme systems.  相似文献   

12.
The analysis of various steroid classes by thermospray HPLC-MS using solvent systems containing 0.1 M ammonium acetate has been described. For simple unconjugated 3-oxo-4-ene steroids the positive ion spectra are dominated by a parent ion M + H+ and with increasing numbers of hydroxyl group intense ions formed by sequential losses of water (M + H- n18)+ become important. Steroids with dihydroxyacetone side-chains readily lose these side-chains and the resulting (M + H-60)+ fragment is the base peak in their spectra. The (M + H-60)+ ion is not important for most steroids with glycerol-type side-chains. Although competition between thermal degradation and vaporization was observed at lower concentrations, the effect was minimized after optimizing conditions and the protonated molecular ion was easily detected when as little as 1-10 pmol of material were injected on-column. Steroid glucuronides when analyzed in the negative ion mode give simple spectra with base peak and parent ion (M-H)-. Lack of fragmentation permits facile and sensitive measurement of individual glucoronides by selected-ion-monitoring. Extensive fragmentation is seen in the positive ion mode with sequential losses of H2O from the molecular ions (M + NH4)+ and from the aglycone fragment ion. For simple unconjugated steroids the sensitivity of HPLC-MS in selected-ion-monitoring mode can be excellent. When the protonated molecular ion of testosterone was monitored the signal/noise ratio for 30 pg testosterone was about 10.  相似文献   

13.
Mass spectra of a series of chloro- and nitrophenylglucuronides by liquid secondary ion (LSI) mass spectrometry were obtained. In the positive ion mode class characteristic fragmentations and adduct ions are observed only in the presence of alkali salt additives. No additives were necessary in the negative ion mode to see abundant class characteristic [M-H]- and aglycone fragment ions. Cluster ion formation was found to be prominent but only in the negative ion mode.  相似文献   

14.
D Karibian  C Deprun    M Caroff 《Journal of bacteriology》1993,175(10):2988-2993
Plasma desorption mass spectrometry has recently been used with success to characterize underivatized lipid A preparations: the major molecular species present give signals indicating their masses, from which probable compositions could be inferred by using the overall composition determined by chemical analyses. In the present study, plasma desorption mass spectrometry was used to compare structures in lipid A preparations isolated from several smooth and rough strains of Escherichia and Salmonella species. Preparations isolated from strains of both genera revealed considerable variation in degree of heterogeneity (number of fatty acids and presence or absence of hexadecanoic acid, phosphorylethanolamine, and aminoarabinose). Molecular species usually associated with Salmonella lipid A were found in preparations from Escherichia sp. In addition, preparations from three different batches of lipid A from one strain of Salmonella minnesota showed significant differences in composition. These results demonstrate that preparations used for biological and structural analyses should be defined in terms of their particular molecular constituents and that no generalizations based on analysis of a single preparation should be made.  相似文献   

15.
Endotoxin extracted from the heptose-less mutant of Salmonella typhimurium was hydrolyzed in 0.1 N HCl in methanol/water (1:1, v/v) at 100 degrees C to yield lipid A, which was then fractionated on a Sephadex LH-20 column to yield a major monophosphoryl lipid A fraction. The monophosphoryl lipid A was further fractionated by preparative thin layer chromatography. This process yielded three major bands (TLC-1, -3, and -5) and two minor bands (TLC-7 and -9). The purity of these fractions was established by ion exchange and reverse phase high performance liquid chromatography. The thin layer fractions were analyzed by fast atom bombardment mass spectrometry. TLC-1 and -3 gave molecular ions (M-H)- at m/e 1730 and 1716, respectively. Both of these fractions contained beta-hydroxymyristic, lauric, and 3-myristoxymyristic acids in O-acyl linkages. The molecular formula and Mr of TLC-1 are C95H179O22N2P and 1731.16; those of TLC-3 are C94H177O22N2P and 1717.15. TLC-1 was a methyl homolog of TLC-3. The major component of TLC-5 (C80H151O22N2P and Mr = 1506.99) gave a molecular ion at m/e 1506 and contained two beta-hydroxymyristic acids and a lauric acid in the O-acyl linkages. The major component of TLC-7 (C66H125O19N2P and Mr = 1280.83) and the single component of TLC-9 gave molecular ions at m/e 1280 and 1098, respectively. TLC-7 contained lauric and beta-hydroxymyristic acids in the O-acyl linkages. TLC-9 (C54H103O18N2P and Mr = 1098.69) contained a single O-acylated beta-hydroxymyristate group. TLC-1 and -3 were nontoxic in the chick embryo lethality test and regressed established tumors in the syngeneic guinea pigs.  相似文献   

16.
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference substances from the rat plasma. The validated method was successfully applied to study the pharmacokinetics of asperosaponin VI and its active metabolite hederagenin in rat plasma after oral administration of asperosaponin VI at a dose of 90 mg/kg.  相似文献   

17.
S-form lipopolysaccharides (LPS) from Klebsiella strain LEN-1 (O3: K1-) and from Salmonella minnesota strain 1114 were positively stained with ruthenium red, whereas R-form LPS from Klebsiella strain LEN-111 (O3-: K1-) and Ra, Rb1, RcP+, Rd1P-, and Re LPS from the respective mutant strains of S. minnesota were not or only faintly stained by such treatment. From these results it was concluded that ruthenium red stains the O-specific polysaccharide chains of LPS. The appearance of stained preparations of S-form LPS suggested that the material responsible for this positive staining corresponded to the surface projections which were seen by the negative staining technique as attached to the ribbon-like structures and spherules of the LPS.  相似文献   

18.
The chemical structure of lipid A isolated from Porphyromonas gingivalis lipopolysaccharide was elucidated by compositional analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy. The hydrophilic backbone of free lipid A was found to consisted of beta(1,6)-linked D-glucosamine disaccharide 1-phosphate. (R)-3-Hydroxy-15-methylhexadecanoic acid and (R)-3-hydroxyhexadecanoic acid are attached at positions 2 and 3 of the reducing terminal residue, respectively, and positions 2' and 3' of the nonreducing terminal unit are acylated with (R)-3-O-(hexadecanoyl)-15-methylhexadecanoic acid and (R)-3-hydroxy-13-methyltetradecanoic acid, respectively. The hydroxyl group at position 4' is partially replaced by another phosphate group, and the hydroxyl groups at positions 4 and 6' are unsubstituted. Considerable heterogeneity in the fatty acid chain length and the degree of acylation and phosphorylation was detected by liquid secondary ion-mass spectrometry (LSI-MS). A significant pseudomolecular ion of lipid A at m/z 1,769.6 [M-H]- corresponding to a diphosphorylated GlcN backbone bearing five acyl groups described above was detected in the negative mode of LSI-MS. Predominant ions, however, were observed at m/z 1,434.9 [M-H]- and m/z 1,449.0 [M-H]-, each representing monophosphoryl lipid A lacking (R)-3-hydroxyhexadecanoic and (R)-3-hydroxy-13-methyltetradecanoic acids, respectively. The presence of mono- and diphosphorylated lipid A species was also confirmed by LSI-MS of de-O-acylated lipid A (m/z 955.3 and 1,035.2, respectively).  相似文献   

19.
The phase behaviour, particularly the fluidity within each phase state and the transitions between them, of lipopolysaccharides and of their lipid moiety, free lipid A, of various species of Gram-negative bacteria, especially of Salmonella minnesota and Escherichia coli, has been investigated by applying mainly Fourier-transform infrared spectroscopy and differential scanning calorimetry. For enterobacterial strains, the transition temperatures of the gel----liquid crystalline (beta----alpha) phase transition of the hydrocarbon chains in dependence on the length of the sugar moiety are highest for free lipids A (around 45 degrees C) and lowest for deep rough mutant lipopolysaccharides (around 30 degrees C). Evaluating certain infrared active vibration bands of the hydrocarbon moiety, mainly the symmetric stretching vibration of the methylene groups around 2850 cm-1, it was found that, in the gel state, the acyl chains of lipopolysaccharides and free lipid A have a higher fluidity as compared with saturated and the same fluidity as compared with unsaturated phospholipids. This 'partial fluidization' of lipopolysaccharide below the transition temperature correlates with its reduced enthalpy change at that temperature compared to phospholipids with the same chain length. The fluidity depends strongly on ambient conditions, i.e. on the Mg2+ and H+ content: higher Mg2+ concentrations and low pH values make the acyl chains of free lipid A and lipopolysaccharide preparations significantly more rigid and also partially increase the transition temperature. The influence of Mg2+ is highest for free lipid A and decreases with increasing length of the sugar side chain within the lipopolysaccharide molecules, whereas the effect of a low pH is similar for all preparations. At basic pH, a fluidization of the lipopolysaccharide and lipid A acyl chains and a decrease in transition temperature take place. Free lipid A and all investigated rough mutant lipopolysaccharides exhibit an extremely strong lyotropic behaviour in the beta----alpha melting enthalpy but not in the value of the transition temperature. The phase transition is distinctly expressed only at water concentrations higher than 50-60%. A further increase of the water content still leads to an increase in the phase-transition enthalpy, particularly for lipopolysaccharides with a more complete sugar moiety. The fluidity of the hydrocarbon chains is shown to be an important parameter with respect to the expression of biological activities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Abstract

Electrospray mass spectra for selected modified deoxynucleosides and deoxynucleoside monophosphates have been determined. Protonated molecular ions are abundant in the positive ion spectrum, while (M-H) appears in the negative ion spectrum. However, fragment ion intensities are usually low in both spectra. Conditions which promote collision-induced dissociation within the electrospray source facilitate fragment ion formation, and the intensity of BH2 + and S+ (positive ion spectrum) and (M-BH) and B (negative ion spectrum) are enhanced by increasing the skimmer cone voltage. MH+ was detected with as little as 3 pmol of deoxynucleoside, and the protonated molecular ion intensity is linear with respect to analyte concentration over two orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号