首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2. Analysis of dynamin hybrids and of dynamin 1-dynamin 2 and dynamin 1-dynamin 3 heteropolymers reveals that concentration-dependent GTPase activation is suppressed by the C-terminal proline/arginine-rich domain of dynamin 1. Dynamin proline/arginine-rich domains also mediate interactions with SH3 domain-containing proteins and thus regulate both self-association and heteroassociation of dynamins.  相似文献   

2.
Dynamin is a GTPase involved in endocytosis and other aspects of membrane trafficking. A critical function in the presynaptic compartment attributed to the brain-specific dynamin isoform, dynamin-1, is in synaptic vesicle recycling. We report that dynamin-2 specifically interacts with members of the Shank/ProSAP family of postsynaptic density scaffolding proteins and present evidence that dynamin-2 is specifically associated with the postsynaptic density. These data are consistent with a role for this otherwise broadly distributed form of dynamin in glutamate receptor down-regulation and other aspects of postsynaptic membrane turnover.  相似文献   

3.
Dynamin, a central player in clathrin-mediated endocytosis, interacts with several functionally diverse SH3 domain-containing proteins. However, the role of these interactions with regard to dynamin function is poorly defined. We have investigated a recently identified protein partner of dynamin, SNX9, sorting nexin 9. SNX9 binds directly to both dynamin-1 and dynamin-2. Moreover by stimulating dynamin assembly, SNX9 stimulates dynamin's basal GTPase activity and potentiates assembly-stimulated GTPase activity on liposomes. In fixed cells, we observe that SNX9 partially localizes to clathrin-coated pits. Using total internal reflection fluorescence microscopy in living cells, we detect a transient burst of EGFP-SNX9 recruitment to clathrin-coated pits that occurs during the late stages of vesicle formation and coincides spatially and temporally with a burst of dynamin-mRFP fluorescence. Transferrin internalization is inhibited in HeLa cells after siRNA-mediated knockdown of SNX9. Thus, our results establish that SNX9 is required for efficient clathrin-mediated endocytosis and suggest that it functions to regulate dynamin activity.  相似文献   

4.
Dynamin is a 100 kDa GTPase required for endocytic-coated vesicle formation. Recombinant human neuronal dynamin (dynamin-1) was used for monoclonal antibody (mAb) production. Two mAbs, designated hudy-2 (for human dynamin) and hudy-4, were chosen for further study based on their differential ability to recognize dynamin-1 and its non-neuronal isoform, dynamin-2. Both bind to the proline-rich C-terminal domain (PRD) of dynamin and inhibit the ability of microtubules and grb2 to stimulate GTPase activity. Hudy-4 binds to an epitope within the last 20 amino acids of dynamin-1 and has no effect on its intrinsic GTPase activity. Hudy-2 binds to an epitope within amino acids 822-838 that is common to dynamin-1 and dynamin-2. Hudy-2 stimulates dynamin's intrinsic GTPase activity in a manner proportional to the valency of the immunoglobulin (Ig) G. Crosslinking IgGs with secondary antibodies caused a 2-fold increase in GTPase activity, while F(ab)s were inactive. Importantly, our findings suggest that the stimulation of dynamin GTPase activity by multivalent proteins which bind in vitro to the PRD may not be a valid criterion on its own for assessing the in vivo functional significance of these interactions.  相似文献   

5.
The dynamins are 100 kDa GTPases involved in the scission of endocytic vesicles from the plasma membrane [1]. Dynamin-1 is present in solution as a tetramer [2], and undergoes further self-assembly following its recruitment to coated pits to form higher-order oligomers that resemble 'collars' around the necks of nascent coated buds [1] [3]. GTP hydrolysis by dynamin in these collars is thought to accompany the 'pinching off' of endocytic vesicles [1] [4]. Dynamin contains a pleckstrin homology (PH) domain that binds phosphoinositides [5] [6], which in turn enhance both the GTPase activity [5] [7] [8] and self-assembly [9] [10] of dynamin. We recently showed that the dynamin PH domain binds phosphoinositides only when it is oligomeric [6]. Here, we demonstrate that interactions between the dynamin PH domain and phosphoinositides are important for dynamin function in vivo. Full-length dynamin-1 containing mutations that abolish phosphoinositide binding by its PH domain was a dominant-negative inhibitor of receptor-mediated endocytosis. Mutated dynamin-1 with both a defective PH domain and impaired GTP binding and hydrolysis also inhibited receptor-mediated endocytosis. These findings suggest that the role of the PH domain in dynamin function differs from that seen for other PH domains. We propose that high-avidity binding to phosphoinositide-rich regions of the membrane by the multiple PH domains in a dynamin oligomer is critical for dynamin's ability to complete vesicle budding.  相似文献   

6.
Dynamin plays a key role in the scission event common to various types of endocytosis. We demonstrate that the pleckstrin homology (PH) domain of dynamin-1 is critical in the process of rapid endocytosis (RE) in chromaffin cells. Introduction of this isolated PH domain into cells at concentrations as low as 1 microM completely suppressed RE. PH domains from other proteins, including that from the closely related dynamin-2, were ineffective as inhibitors, even at high concentrations. Mutational studies indicated that a pair of isoform-specific amino acids, located in a variable loop between the first two beta-strands, accounted for the differential effect of the two dynamin PH domains. Switching these amino acids in the dynamin-2 PH domain to the equivalent residues in dynamin-1 (SL-->GI) generated a molecule that blocked RE. Thus, the PH domain of dynamin-1 is essential for RE and exhibits a precise molecular selectivity. As chromaffin cells express both dynamin-1 and -2, we speculate that different isoforms of dynamin may regulate distinct endocytotic processes and that the PH domain contributes to this specificity.  相似文献   

7.
Dynamin is a 100-kDa GTPase with multiple domains. Some of these have known functions, namely, the N-terminal GTPase domain, the PH domain that binds phosphatidylinositol lipids, and the C-terminal proline-arginine-rich domain (PRD) that binds to several SH3 domain-containing dynamin partners. Others, for example, the "middle" located between the GTPase domain and the PH domain and a predicted alpha-helical domain located between the PH domain and PRD, have unknown functions. Dynamin exists as a homotetramer in solution and self-assembles into higher-order structures resembling rings and helical stacks of rings. Dynamin self-assembly stimulates its GTPase activity. We used limited proteolysis to dissect dynamin's domain structure and to gain insight into intradomain interactions that regulate dynamin self-assembly and stimulate GTPase activity. We found that the PH domain functions as a negative regulator of dynamin self-assembly and stimulates GTPase activity and that the alpha-helical domain, termed GED for GTPase effector domain, is required for stimulated GTPase activity.  相似文献   

8.
Dynamin is a master regulator of membrane fission in endocytosis. However, a function for dynamin immediately upon fusion has also been suspected from a variety of experiments that measured release of granule contents. The role of dynamin guanosine triphosphate hydrolase (GTPase) activity in controlling fusion pore expansion and postfusion granule membrane topology was investigated using polarization optics and total internal reflection fluorescence microscopy (pTIRFM) and amperometry. A dynamin-1 (Dyn1) mutant with increased GTPase activity resulted in transient deformations consistent with rapid fusion pore widening after exocytosis; a Dyn1 mutant with decreased activity slowed fusion pore widening by stabilizing postfusion granule membrane deformations. The experiments indicate that, in addition to its role in endocytosis, GTPase activity of dynamin regulates the rapidity of fusion pore expansion from tens of milliseconds to seconds after fusion. These findings expand the membrane-sculpting repertoire of dynamin to include the regulation of immediate postfusion events in exocytosis that control the rate of release of soluble granule contents.  相似文献   

9.
Domain structure and intramolecular regulation of dynamin GTPase.   总被引:11,自引:0,他引:11       下载免费PDF全文
Dynamin is a 100 kDa GTPase required for receptor-mediated endocytosis, functioning as the key regulator of the late stages of clathrin-coated vesicle budding. It is specifically targeted to clathrin-coated pits where it self-assembles into 'collars' required for detachment of coated vesicles from the plasma membrane. Self-assembly stimulates dynamin GTPase activity. Thus, dynamin-dynamin interactions are critical in regulating its cellular function. We show by crosslinking and analytical ultracentrifugation that dynamin is a tetramer. Using limited proteolysis, we have defined structural domains of dynamin and evaluated the domain interactions and requirements for self-assembly and GTP binding and hydrolysis. We show that dynamin's C-terminal proline- and arginine-rich domain (PRD) and dynamin's pleckstrin homology (PH) domain are, respectively, positive and negative regulators of self-assembly and GTP hydrolysis. Importantly, we have discovered that the alpha-helical domain interposed between the PH domain and the PRD interacts with the N-terminal GTPase domain to stimulate GTP hydrolysis. We term this region the GTPase effector domain (GED) of dynamin.  相似文献   

10.
During clathrin-mediated endocytosis, the GTPase dynamin promotes formation of clathrin-coated vesicles, but its mode of action is unresolved. We provide evidence that a switch in three functional states of dynamin (dimers, tetramers, rings/spirals) coordinates its GTPase cycle. Dimers exhibit negative cooperativity whereas tetramers exhibit positive cooperativity with respect to GTP. Our study identifies tetramers as the kinetically most stable GTP-bound conformation of dynamin, which is required to promote further assembly into higher order structures such as rings or spirals. In addition, using fluorescence lifetime imaging microscopy, we show that interactions between dynamin and auxilin in cells are GTP-, endocytosis- and tetramer-dependent. Furthermore, we show that the cochaperone activity of auxilin is required for constriction of clathrin-coated pits, the same early step in endocytosis known to be regulated by the lifetime of dynamin:GTP. Together, our findings support the model that the GTP-bound conformation of dynamin tetramers stimulates formation of constricted coated pits at the plasma membrane by regulating the chaperone activity of hsc70/auxilin.  相似文献   

11.
The dynamin family of GTP-binding proteins has been implicated as playing an important role in endocytosis. In Drosophila shibire, mutations of the single dynamin gene cause blockade of endocytosis and neurotransmitter release, manifest as temperature-sensitive neuromuscular paralysis. Mammals express three dynamin genes: the neural specific dynamin I, ubiquitous dynamin II, and predominantly testicular dynamin III. Mutations of dynamin I result in a blockade of synaptic vesicle recycling and receptor-mediated endocytosis. Here, we show that dynamin II plays a key role in controlling constitutive and regulated hormone secretion from mouse pituitary corticotrope (AtT20) cells. Dynamin II is preferentially localized to the Golgi apparatus where it interacts with G-protein betagamma subunit and regulates secretory vesicle release. The presence of dynamin II at the Golgi apparatus and its interaction with the betagamma subunit are mediated by the pleckstrin homology domain of the GTPase. Overexpression of the pleckstrin homology domain, or a dynamin II mutant lacking the C-terminal SH3-binding domain, induces translocation of endogenous dynamin II from the Golgi apparatus to the plasma membrane and transformation of dynamin II from activity in the secretory pathway to receptor-mediated endocytosis. Thus, dynamin II regulates secretory vesicle formation from the Golgi apparatus and hormone release from mammalian neuroendocrine cells.  相似文献   

12.
Dynamin, a large GTPase, is located at the necks of clathrin-coated pits where it facilitates the release of coated vesicles from the plasma membrane upon GTP binding, and hydrolysis. Previously, we have shown by negative stain electron microscopy that wild-type dynamin and a dynamin mutant lacking the C-terminal proline-rich domain, DeltaPRD, form protein-lipid tubes that constrict and vesiculate upon addition of GTP. Here, we show by time-resolved cryo-electron microscopy (cryo-EM) that DeltaPRD dynamin in the presence of GTP rapidly constricts the underlying lipid bilayer, and then gradually disassembles from the lipid. In agreement with the negative stain results, the dynamin tubes constrict from 50 to 40 nm, and their helical pitch decreases from approximately 13 to 9.4 nm. However, in contrast to the previous results, examination by cryo-EM shows that the lipid bilayer remains intact and small vesicles or fragments do not form upon GTP binding and hydrolysis. Therefore, the vesicle formation seen by negative stain may be due to the lack of mobility of the dynamin tubes on the grid during the GTP-induced conformational changes. Our results confirm that dynamin is a mechanochemical enzyme and suggest that during endocytosis dynamin is directly responsible for membrane constriction. In the cell, other proteins may enhance the activity of dynamin or the constraints induced by the surrounding coated pit and plasma membrane during constriction may cause the final membrane fission event.  相似文献   

13.
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs.  相似文献   

14.
Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely localized at the mitotic spindle, and the localization depended on its proline-rich domain (PRD), which is required for microtubule association. The deletion of PRD resulted in the impairment of cytokinesis, whereby the mutant had less effect on endocytosis. Interestingly, dominant-negative dynamin (K44A), which blocks membrane traffic but has no effect on microtubules, also blocked cytokinesis. On the other hand, the deletion of the middle domain, which binds to γ-tubulin, impaired the entry into mitosis. As both deletion mutants had no significant effect on endocytosis, dynamin 2 may participate in cell cycle progression by regulating the microtubules. These data suggest that dynamin may play a key role for cell cycle progression by two distinct pathways, membrane traffic and cytoskeleton.  相似文献   

15.
Plasma membrane clathrin-coated vesicles form after the directed assembly of clathrin and the adaptor complex, AP2, from the cytosol onto the membrane. In addition to these structural components, several other proteins have been implicated in clathrin-coated vesicle formation. These include the large molecular weight GTPase, dynamin, and several Src homology 3 (SH3) domain-containing proteins which bind to dynamin via interactions with its COOH-terminal proline/arginine-rich domain (PRD). To understand the mechanism of coated vesicle formation, it is essential to determine the hierarchy by which individual components are targeted to and act in coated pit assembly, invagination, and scission.To address the role of dynamin and its binding partners in the early stages of endocytosis, we have used well-established in vitro assays for the late stages of coated pit invagination and coated vesicle scission. Dynamin has previously been shown to have a role in scission of coated vesicles. We show that dynamin is also required for the late stages of invagination of clathrin-coated pits. Furthermore, dynamin must bind and hydrolyze GTP for its role in sequestering ligand into deeply invaginated coated pits.We also demonstrate that the SH3 domain of endophilin, which binds both synaptojanin and dynamin, inhibits both late stages of invagination and also scission in vitro. This inhibition results from a reduction in phosphoinositide 4,5-bisphosphate levels which causes dissociation of AP2, clathrin, and dynamin from the plasma membrane. The dramatic effects of the SH3 domain of endophilin led us to propose a model for the temporal order of addition of endophilin and its binding partner synaptojanin in the coated vesicle cycle.  相似文献   

16.
Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution, we detected the arrival of dynamin at coated pits and defined dynamin dimers as the preferred assembly unit. We also used live-cell spinning-disk confocal microscopy calibrated by single-molecule EGFP detection to determine the number of dynamins recruited to the coated pits. A large fraction of budding coated pits recruit between 26 and 40 dynamins (between 1 and 1.5 helical turns of a dynamin collar) during the recruitment phase associated with neck fission; 26 are enough for coated vesicle release in cells partially depleted of dynamin by RNA interference. We discuss how these results restrict models for the mechanism of dynamin-mediated membrane scission.  相似文献   

17.
Burger KN  Demel RA  Schmid SL  de Kruijff B 《Biochemistry》2000,39(40):12485-12493
Dynamin is a large GTPase involved in the regulation of membrane constriction and fission during receptor-mediated endocytosis. Dynamin contains a pleckstrin-homology domain which is essential for endocytosis and which binds to anionic phospholipids. Here, we show for the first time that dynamin is a membrane-active molecule capable of penetrating into the acyl chain region of membrane lipids. Lipid penetration is strongly stimulated by phosphatidic acid (PA), phosphatidylinositol 4-phosphate, and phosphatidylinositol 4, 5-bisphosphate. Though binding is more efficient in the presence of the phosphoinositides, a much larger part of the dynamin molecule penetrates into PA-containing mixed-lipid systems. Thus, local lipid metabolism will dramatically influence dynamin-lipid interactions, and dynamin-lipid interactions are likely to play an important role in dynamin-dependent endocytosis. Our data suggest that dynamin is directly involved in membrane destabilization, a prerequisite to membrane fission.  相似文献   

18.
Dynamin is a large molecular weight GTPase. Amongst other biological processes, it is involved in clathrin-dependent endocytosis. It can self-assemble or assemble on other macromolecular structures that result in an increase in its GTPase activity. Its role in endocytosis has been variously attributed to being a force-generating enzyme or a signalling protein. Here we review evidence for the oligomeric state of dynamin at high and low ionic strength conditions. We also review work on the elementary processes of the dynamin GTPase at high ionic strength and compare these to the ATPase of the force-generating protein myosin and the GTPase of the signalling protein Ras. New data on the interaction of dynamin with a fluorescent derivative of GTPgammaS are also presented. The possible mechanism by which assembly of dynamin leads to an increase in its GTPase activity is discussed.  相似文献   

19.
Dynamin - a member of the GTP-ase protein family - is essential for many intracellular membrane trafficking events in multiple endocytic processes. The unique biochemical features of dynamin - especially its propensity to assemble - enable severing the nascent vesicles from the membrane. The mechanism of dynamin's action is still a subject of debate - whether it functions as a mechanochemical enzyme or a regulatory GTPase. The GTPase domain of dynamin contains three GTP-binding motifs. This domain is very conservative across the species, including that recently cloned by us in the unicellular eukaryote Paramecium. Dynamin interacts with a number of partners such as endophilin and proteins involved in coordination of endocytosis with motor molecules. A growing body of evidence indicates that dynamin and dynamin-related proteins are involved both in pathology and protection against human diseases. The most interesting are dynamin-like Mx proteins exhibiting antiviral activity.  相似文献   

20.
The first evidence of dynamin presence and its colocalization with clathrin in the compartment involved in Paramecium receptor-mediated endocytosis is presented. We identified dynamin by cloning, Western blotting, and immunodetection in confocal and electron microscopy. The partial genes, which we have designated ParDyn1 and ParDyn2, are 1091 bp long, 90% identical to one another and encode the N-terminal and middle domains of Paramecium dynamin isoform 1 and isoform 2. The deduced amino acid sequences contain all three guanosine 5'-triphosphate (GTP)-binding motifs and show 67% homology to mammalian dynamins. Antibodies generated against the cloned GTPase domain revealed dynamin association with endosomes containing transferrin, the marker of receptor-mediated endocytosis. In Western blotting a strong immunoreactive polypeptide of approximately 116 kDa, which seems to be phosphorylated, was accompanied by a faint one of approximately 90 kDa in cytosolic fraction (S2). Dynamin level was correlated with internalization of transferrin and it was significantly decreased upon inhibition of this process. Immunogold labeling in electron microscopy revealed colocalization of dynamin and clathrin in coated pits and endocytic vesicles. Moreover, the polypeptide cross-reaction with 2 different antibodies against mammalian clathrin was identified by immunoblotting. These results indicate that dynamin- and clathrin-dependent pathway exists in this evolutionary ancient cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号