首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acyl carrier protein (ACP) is a small, highly conserved protein with an essential role in a myriad of reactions throughout lipid metabolism in plants and bacteria where it interacts with a remarkable diversity of proteins. The nature of the proper recognition and precise alignment between the protein moieties of ACP and its many interactive proteins is not understood. Residues conserved among ACPs from numerous plants and bacteria were considered as possibly being crucial to ACP's function, including protein-protein interaction, and a method of identifying amino acid residue clusters of high hydrophobicity on ACP's surface was used to estimate residues possibly involved in specific ACP-protein interactions. On the basis of this information, single-site mutation analysis of multiple residues, one at a time, of ACP was used to probe the identities of potential contact residues of ACPSH or acyl-ACP involved in specific interactions with selected enzymes. The roles of particular ACP residues were more precisely defined by site-directed fluorescence analyses of various myristoyl-mutant-ACPs upon specific interaction with the Escherichia coli hemolysin-activating acyltransferase, HlyC. This was done by selectively labeling each mutated site, one at a time, with an environmentally sensitive fluoroprobe and observing its fluorescence behavior in the absence and presence of HlyC. Consequently, a picture of the portion of ACP involved in selected macromolecular interaction has emerged.  相似文献   

2.
In the spherical virion of the parvovirus minute virus of mice, several amino acid side chains of the capsid were previously found to be involved in interactions with the viral single-stranded DNA molecule. We have individually truncated by mutation to alanine many (ten) of these side chains and analyzed the effects on capsid assembly, stability and conformation, viral DNA encapsidation, and virion infectivity. Mutation of residues Tyr-270, Asp-273, or Asp-474 led to a drastic reduction in infectivity. Mutant Y270A was defective in capsid assembly; mutant D273A formed stable capsids, but it was essentially unable to encapsidate the viral DNA or to externalize the N terminus of the capsid protein VP2, a connected conformational event. Mutation of residues Asp-58, Trp-60, Asn-183, Thr-267, or Lys-471 led to a moderate reduction in infectivity. None of these mutations had an effect on capsid assembly or stability, or on the DNA encapsidation process. However, those five mutant virions were substantially less stable than the parental virion in thermal inactivation assays. The results with this model spherical virus indicate that several capsid residues that are found to be involved in polar interactions or multiple hydrophobic contacts with the viral DNA molecule contribute to preserving the active conformation of the infectious viral particle. Their effect appears to be mediated by the non-covalent interactions they establish with the viral DNA. In addition, at least one acidic residue at each DNA-binding region is needed for DNA packaging.  相似文献   

3.
Feng H  Dong L  Klutz AM  Aghaebrahim N  Cao W 《Biochemistry》2005,44(34):11486-11495
Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by making an endonucleolytic incision at the 3' side one nucleotide from a deaminated base lesion. Site-directed mutagenesis analysis was conducted at seven conserved motifs of the thermostable Thermotoga maritima endonuclease V to probe for residues that affect DNA-protein interactions. Y80, G83, and L85 in motif III, H116 and G121 in motif IV, A138 in motif V, and S182 in motif VI affect binding of both the double-stranded inosine-containing DNA substrate and the nicked double-stranded inosine-containing DNA product, resulting in multiple enzymatic turnovers. The substantially reduced DNA cleavage activity observed in G113 in motif IV and G136 in motif V can be partly attributed to their defect in metal cofactor coordination. Alanine substitution at amino acid 118 primarily reduces the level of binding to the nicked product, suggesting that R118 plays a significant role in postcleavage DNA-protein interaction. Binding and cleavage analyses of multiple mutants at positions Y80 and H116 underscore the role these residues play in protein-DNA interaction and implicate their potential involvement as a hydrogen bond donor in recognition of deaminated DNA bases. DNA cleavage analysis using mutants defective in DNA binding reveals a novel 3'-exonuclease activity in endonuclease V. An alternative model is proposed that entails lesion specific cleavage and endonuclease to 3'-exonuclease mode switch by endonuclease V for removal of deaminated base lesions during endonuclease V-mediated repair.  相似文献   

4.
5.
6.
Thromboxane A2 synthase (TXAS) is a member of the cytochrome P450 superfamily and catalyzes an isomerization reaction that converts prostaglandin H2 to thromboxane A2. As a step toward understanding the structure/function relationships of TXAS, we mutated amino acid residues predicted to bind the propionate groups of A- and D-pyrrole rings of the heme. These mutations at each of these residues (Asn-110, Trp-133, Arg-137, Arg-413, and Arg-478) resulted in altered heme binding, as evidenced by perturbation of the absorption spectra and EPR. The mutations, although causing no significant changes in the secondary structure of the proteins, induced tertiary structural changes that led to increased susceptibility to trypsin digestion and alteration of the intrinsic protein fluorescence. Moreover, these mutant proteins lost their binding affinity to the substrate analog, had a lower heme content and retained less than 5% of the wild-type catalytic activity. However, mutations at the neighboring amino acid of the aforementioned residues yielded mutant proteins retaining the biochemical and biophysical properties of the wild type TXAS. Aligning the TXAS sequence with the structurally known P450s, we proposed that in TXAS the A-ring propionate of the heme is hydrogen bonded to Asn-110, Arg-413, and Arg-478, whereas D-ring propionate is hydrogen bonded to Trp-133 and Arg-137. Furthermore, both A- and D-ring propionates bulge away from the heme plane and both lie on the proximal face of heme plane, a structure similar to P450terp.  相似文献   

7.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   

8.
Engineered antibodies are a large and growing class of protein therapeutics comprising both marketed products and many molecules in clinical trials in various disease indications. We investigated naturally conserved networks of amino acids that support antibody VH and VL function, with the goal of generating information to assist in the engineering of robust antibody or antibody‐like therapeutics. We generated a large and diverse sequence alignment of V‐class Ig‐folds, of which VH and VL domains are family members. To identify conserved amino acid networks, covariations between residues at all possible position pairs were quantified as correlation coefficients (?‐values). We provide rosters of the key conserved amino acid pairs in antibody VH and VL domains, for reference and use by the antibody research community. The majority of the most strongly conserved amino acid pairs in VH and VL are at or adjacent to the VHVL interface suggesting that the ability to heterodimerize is a constraining feature of antibody evolution. For the VH domain, but not the VL domain, residue pairs at the variable‐constant domain interface (VHCH1 interface) are also strongly conserved. The same network of conserved VH positions involved in interactions with both the VL and CH1 domains is found in camelid VHH domains, which have evolved to lack interactions with VL and CH1 domains in their mature structures; however, the amino acids at these positions are different, reflecting their different function. Overall, the data describe naturally occurring amino acid networks in antibody Fv regions that can be referenced when designing antibodies or antibody‐like fragments with the goal of improving their biophysical properties. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Tai N  Ding Y  Schmitz JC  Chu E 《Nucleic acids research》2002,30(20):4481-4488
Previous studies have shown that human dihydrofolate reductase (DHFR) acts as an RNA-binding protein, in which it binds to its own mRNA and, in so doing, results in translational repression. In this study, we used RNA gel mobility shift and nitrocellulose filter-binding assays to further investigate the specificity of the interaction between human DHFR protein and human DHFR mRNA. Site-directed mutagenesis was used to identify the critical amino acid residues on DHFR protein required for RNA recognition. Human His-Tag DHFR protein specifically binds to human DHFR mRNA, while unrelated proteins including thymidylate synthase, p53 and glutathione-S-transferase were unable to form a ribonucleoprotein complex with DHFR mRNA. The Cys6 residue is essential for RNA recognition, as mutation at this amino acid with either an alanine (C6A) or serine (C6S) residue almost completely abrogated RNA-binding activity. Neither one of the cysteine mutant proteins was able to repress the in vitro translation of human DHFR mRNA. Mutations at amino acids Ile7, Arg28 and Phe34, significantly reduced RNA-binding activity. An RNA footprinting analysis identified three different RNA sequences, bound to DHFR protein, ranging in size from 16 to 45 nt, while a UV cross-linking analysis isolated an ~16 nt RNA sequence bound to DHFR. These studies begin to identify the critical amino acid residues on human DHFR that mediate RNA binding either through forming direct contact points with RNA or through maintaining the protein in an optimal structure that allows for the critical RNA-binding domain to be accessible.  相似文献   

10.
Peptide hormones are generally synthesized as inactive higher mol. wt precursors. Processing of the prohormone into biologically active peptides by specific proteolytic cleavages occurs most often at pairs of basic amino acids but also at single arginine residues. To study the role of protein secondary structure in this process, we used site-directed mutagenesis to modify the predicted secondary structure around the cleavage sites of human prosomatostatin and monitored the processing of the precursor after introduction of the mutated cDNAs in Neuro2A cells. Amino acid substitutions were introduced that affected the possibility of forming beta-turn structures in the immediate vicinity of the somatostatin-28 (S-28) and somatostatin-14 (S-14) cleavage sites. Infection of Neuro2A cells with a retrovirus carrying a human somatostatin cDNA resulted in the expression of prosomatostatin and its processing into S-28 and S-14, indicating that these cells have the necessary enzymes to process prohormone at both single and paired amino acid residues. Disruption of the different beta-turns had various effects on prosomatostatin processing: substitution of Ala for Pro-5 drastically decreased prosomatostatin processing and replacement of Pro-9 by Ala led to the accumulation of the intermediate maturation product [Arg-2Lys-1]-S-14. In contrast, substitution of Ala for Asn-12, Gly+2 and Cys+3 respectively had only very little effect on the proteolytic processing of prosomatostatin. Our results show that amino acids other than the basic amino acid residues are required to define the cleavage sites for prohormone proteolytic processing and suggest that higher orders of protein structure are involved in substrate recognition by the endoproteases.  相似文献   

11.
This study advances direct evidence of the binding affinity of N-glycans for aromatic amino acid residues. The intrinsic fluorescence intensities of bovine pancreatic RNase A, bovine alpha-lactalbumin, and aromatic amino acids were markedly depressed in solutions (1 mM or so) of free N-glycans of both the high-mannose and complex types. In addition, free N-glycans inhibited the chemical modifications of the solvent-exposed tyrosine and tryptophan residues of these proteins, confirming the affinity of N-glycans for aromatic amino acid residues. The results are discussed in connection with the roles of N-glycans in novel interactions between N-glycans and proteins.  相似文献   

12.
REV1 is a member of the Y-family DNA polymerases, but is atypical in utilizing only dCTP with a preference for guanine (G) as the template. Crystallography of the REV1-DNA-dCTP ternary complex has revealed a unique mechanism by which template G is evicted from the DNA helix and incoming dCTP is recognized by an arginine residue in an α-loop, termed the N-digit. To better understand functions of its individual amino acid residues, we made a series of mutant human REV1 proteins. We found that R357 and L358 play vital roles in template binding. Furthermore, extensive mutation analysis revealed a novel function of R357 for substrate discrimination, in addition to previously proposed specific interaction with incoming dCTP. We found that the binding pocket for dCTP of REV1 has also significant but latent affinity for dGTP. The results suggest that the positive charge on R357 could prevent interaction with dGTP. We propose that both direct and indirect mechanisms mediated by R357 ensure specificity for dCTP.  相似文献   

13.
14.
Aqueous solutions (pH = 8) of both 3,3'-dimethyl and 4,4'-dimethyl substituted analogues of the photoallergen fentichlor (bis(2-hydroxy-5-chlorophenyl)sulphide) produced stable semiquinone radicals when irradiated with u.v. light (greater than 310 nm). These radicals have been characterised using electron spin resonance techniques: the results confirm the assignment of hyperfine coupling constants for the parent fentichlor radical. The binding of fentichlor to HSA was found to be partly oxygen dependent demonstrating a role for semiquinone type radicals in the binding mechanism. The stoichiometry and specificity of the binding of the dimethyl analogues to soluble proteins were found to be similar to that of fentichlor itself.  相似文献   

15.
The nature of intermolecular interactions between aromatic amino acid residues has been investigated by a combination of molecular dynamics and ab initio methods. The potential energy surface of various interacting pairs, including tryptophan, phenilalanine, and tyrosine, was scanned for determining all the relevant local minima by a combined molecular dynamics and conjugate gradient methodology with the AMBER force field. For each of these minima, single-point correlated ab initio calculations of the binding energy were performed. The agreement between empirical force field and ab initio binding energies of the minimum energy structures is excellent. Aromatic-aromatic interactions can be rationalized on the basis of electrostatic and van der Waals interactions, whereas charge transfer or polarization phenomena are small for all intermolecular complexes and, particularly, for stacked structures. Proteins 2002;48:117-125.  相似文献   

16.
Yoon HY  Cho EH  Yang SJ  Lee HJ  Huh JW  Choi MM  Cho SW 《Biochimie》2004,86(4-5):261-267
In the present study, the cassette mutagenesis at several putative positions (K94, G96, K118, K130, or D172) was performed to examine the residues involved in the glutamate-binding of the human glutamate dehydrogenase isozymes (hGDH1 and hGDH2). None of the mutations tested affected the expression or stability of the proteins. There was dramatic reduction in the catalytic efficiency in mutant proteins at K94, G96, K118, or K130 site, but not at D172 site. The K(M) values for glutamate were 4-10-fold greater for the mutants at K94, G96, or K118 site than for the wild-type hGDH1 and hGDH2, whereas no differences in the K(M) values for NAD(+) were detected between the mutant and wild-type enzymes. For K130Y mutant, the K(M) value for glutamate increased 1.6-fold, whereas the catalytic efficiency (k(cat)/K(M)) showed only 2-3% of the wild-type. Therefore, the decreased catalytic efficiency of the K130 mutant mainly results from the reduced k(cat) value, suggesting a possibility that the K130Y residue may be involved in the catalysis rather than in the glutamate-binding. The D172Y mutant did not show any changes in k(cat) value and K(M) values for glutamate and NAD(+), indicating that D172Y is not directly involved in catalysis and substrates binding of the hGDH isozymes. For sensitivity to ADP activation, only the D172Y mutant showed a reduced sensitivity to ADP activation. The reduction of ADP activation in D172Y mutant was more profoundly observed in hGDH2 than in hGDH1. There were no differences in their sensitivities to GTP inhibition between the wild-type and mutant GDHs at all positions tested. Our results suggest that K94, G96, and K118 residues play an important role, although at different degrees, in the binding of glutamate to hGDH isozymes.  相似文献   

17.
Tyr(446) in putative transmembrane segment 10 (TM10) of the yeast galactose transporter Gal2 has previously been identified as essential for galactose recognition. In the present study, alignment of the amino acid sequences of 63 sugar transporters or related proteins revealed 14 aromatic sites, including Tyr(446) of Gal2, that are conserved in >75% of these proteins. The importance of the remaining 13 conserved aromatic amino acids was examined individually by random mutagenesis using degenerate primers. Galactose transport-positive clones were identified by plate selection and subjected to DNA sequencing. For those transport-positive clones corresponding to Tyr(352), and Phe(504) mutants, all the amino acid substitutions comprised aromatic residues. The importance of the aromatic residues at these sites was further investigated by replacing them individually with each of the other 19 amino acids and measuring the galactose transport activity of the resulting mutants. Among both Tyr(352) and Phe(504) mutants, the other aromatic amino acids supported galactose transport; no other amino acids conferred high affinity transport activity. Thus, at least three aromatic sites are critical for galactose transport: one at the extracellular boundary of putative TM7 (Tyr(352)), one in the middle of putative TM10 (Tyr(446)), and one in the middle of putative TM12 (Phe(504)).  相似文献   

18.
Huperzine A, a potential agent for therapy in Alzheimer's disease and for prophylaxis of organophosphate toxicity, has recently been characterized as a reversible inhibitor of cholinesterases. To examine the specificity of this novel compound in more detail, we have examined the interaction of the 2 stereoisomers of Huperzine A with cholinesterases and site-specific mutants that detail the involvement of specific amino acid residues. Inhibition of fetal bovine serum acetylcholinesterase by (-)-Huperzine A was 35-fold more potent than (+)-Huperzine A, with KI values of 6.2 nM and 210 nM, respectively. In addition, (-)-Huperzine A was 88-fold more potent in inhibiting Torpedo acetylcholinesterase than (+)-Huperzine A, with KI values of 0.25 microM and 22 microM, respectively. Far larger KI values that did not differ between the 2 stereoisomers were observed with horse and human serum butyrylcholinesterases. Mammalian acetylcholinesterase, Torpedo acetylcholinesterase, and mammalian butyrylcholinesterase can be distinguished by the amino acid Tyr, Phe, or Ala in the 330 position, respectively. Studies with mouse acetylcholinesterase mutants, Tyr 337 (330) Phe and Tyr 337 (330) Ala yielded a difference in reactivity that closely mimicked the native enzymes. In contrast, mutation of the conserved Glu 199 residue to Gln in Torpedo acetylcholinesterase produced only a 3-fold increase in KI value for the binding of Huperzine A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Detailed analyses of protein structures provide an opportunity to understand conformation and function in terms of amino acid sequence and composition. In this work, we have systematically analyzed the characteristic features of the amino acid residues found in alpha-helical coiled-coils and, in so doing, have developed indices for their properties, conformational parameters, surrounding hydrophobicity and flexibility. As expected, there is preference for hydrophobic (Ala, Leu), positive (Lys, Arg) and negatively (Glu) charged residues in coiled-coil domains. However, the surrounding hydrophobicity of residues in coiled-coil domains is significantly less than that for residues in other regions of coiled-coil proteins. The analysis of temperature factors in coiled-coil proteins shows that the residues in these domains are more stable than those in other regions. Further, we have delineated the medium- and long-range contacts in coiled-coil domains and compared the results with those obtained for other (non-coiled-coil) parts of the same proteins and non-coiled-coil helical segments of globular proteins. The residues in coiled-coil domains are largely influenced by medium-range contacts, whereas long-range interactions play a dominant role in other regions of these same proteins as well as in non-coiled-coil helices. We have also revealed the preference of amino acid residues to form cation-pi interactions and we found that Arg is more likely to form such interactions than Lys. The parameters developed in this work can be used to understand the folding and stability of coiled-coil proteins in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号