首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capping structures of simian virus 40 19S and 16S mRNAs.   总被引:12,自引:3,他引:9       下载免费PDF全文
Y Groner  P Carmi    Y Aloni 《Nucleic acids research》1977,4(11):3959-3968
In vivo [methyl 3H]-labeled SV40 19S and 16S mRNA species were purified and their internal methylation as well as their capping structures analyzed. SV40 viral mRNA sedimenting in the 19S region contains approximately equal proportions of m7GpppAm and m7Gppm6Am, while the 16S mRNA contains mainly m7Gpppm6Am. N6 methyl adenosine is located internally within the RNA chains of both the 19S and 16S species.  相似文献   

2.
The late 19S RNAs of simian virus 40 (SV40) are functionally polycistronic, i.e., all encode both VP2 and VP3. The VP3-coding sequences are situated in the same reading frame as the VP2-coding sequences, within the carboxy-terminal two-thirds of the VP2-coding sequences. To test whether VP3 is produced by proteolytic processing of VP2, we introduced a variety of deletion and insertion mutations within the amino-terminal end of the VP2-coding sequences. Genetic and biochemical analysis of the proteins synthesized in cells transfected with these mutants indicated that VP2 and VP3 were synthesized independently of each other. A leaky scanning model for the synthesis of VP3 was tested by the insertion of a strong initiation signal (CCAACATGG) upstream of the VP3-coding sequences. When the signal was placed in the same reading frame as VP3, synthesis of VP3 was reduced by a factor of 10 to 20, whereas synthesis of the expected VP3-related fusion protein occurred at a rate similar to that observed for VP3 in cells transfected with wild-type SV40 DNA. Insertion of this strong initiation signal at the same site, but in a different reading frame, resulted in the synthesis of VP3 at one-third of the wild-type rate. Mutation of the VP2 initiator AUG resulted in a small but reproducible (1.6-fold) increase in VP3 accumulation. From these experiments we conclude that (i) VP3 is synthesized predominantly by independent initiation of translation via a leaky scanning mechanism, rather than by proteolytic processing of VP2 or direct internal initiation of translation; (ii) a strong initiation signal 5' of the VP3-coding sequences can significantly inhibit synthesis of VP3, but does not act as an absolute barrier to scanning ribosomes; (iii) approximately 70% of scanning ribosomes bypass the VP2 initiator AUG, which is present in a weak context (GGUCCAUGG), and initiate at the VP3 initiation signal located downstream; and (iv) reinitiation of translation appears to occur on the SV40 late 19S mRNAs at an efficiency of 25 to 50%.  相似文献   

3.
The cricket paralysis virus (CrPV), a member of the CrPV-like virus family, contains a single positive-stranded RNA genome that encodes two non-overlapping open reading frames separated by a short intergenic region (IGR). The CrPV IGR contains an internal ribosomal entry site (IRES) that directs the expression of structural proteins. Unlike previously described IRESs, the IGR IRES initiates translation by recruiting 80S ribosomes in the absence of initiator Met-tRNA(i) or any canonical initiation factors, from a GCU alanine codon located in the A-site of the ribosome. Here, we have shown that a variety of mutations, designed to disrupt individually three pseudoknot (PK) structures and alter highly conserved nucleotides among the CrPV-like viruses, inhibit IGR IRES-mediated translation. By separating the steps of translational initiation into ribosomal recruitment, ribosomal positioning and ribosomal translocation, we found that the mutated IRES elements could be grouped into two classes. One class, represented by mutations in PKII and PKIII, bound 40S subunits with significantly reduced affinity, suggesting that PKIII and PKII are involved in the initial recruitment of the ribosome. A second class of mutations, exemplified by alterations in PKI, did not affect 40S binding but altered the positioning of the ribosome on the IRES, indicating that PKI is involved in the correct positioning of IRES-associated ribosomes. These results suggest that the IGR IRES has distinct pseudoknot-like structures that make multiple contacts with the ribosome resulting in initiation factor-independent recruitment and correct positioning of the ribosome on the mRNA.  相似文献   

4.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA is known to interact with the 40S ribosomal subunit alone, in the absence of any additional initiation factors or Met-tRNAi. Previous work from this laboratory on the 80S and 48S ribosomal initiation complexes involving the HCV IRES showed that stem-loop III, the pseudoknot domain, and some coding sequence were protected from pancreatic RNase digestion. Stem-loop II is never protected by these complexes. Furthermore, there is no prior evidence reported showing extensive direct binding of stem-loop II to ribosomes or subunits. Using direct analysis of RNase-protected HCV IRES domains bound to 40S ribosomal subunits, we have determined that stem-loops II and III and the pseudoknot of the HCV IRES are involved in this initial binding step. The start AUG codon is only minimally protected. The HCV-40S subunit binary complex thus involves recognition and binding of stem-loop II, revealing its role in the first step of a multistep initiation process that may also involve rearrangement of the bound IRES RNA as it progresses.  相似文献   

5.
Certain viral and cellular mRNAs initiate translation cap-independently at internal ribosome entry site (IRES) elements. Picornavirus IRES elements are widely used in dicistronic or multicistronic vectors in gene therapy, virus replicon systems, and analysis of IRES function. In such vectors, expression of the upstream gene often serves as internal control to standardize the readings of IRES-driven downstream reporter activity. Picornaviral IRES elements translate optimally at up to 120 mM K(+) concentration, whereas genes used as upstream reporters usually have lower salt optima when present in monocistronic mRNAs. However, here we show that such reporter genes are efficiently translated at higher K(+) concentrations when placed upstream of a functional picornavirus IRES. This translation enhancement occurs in cis, is independent of the nature of the first reporter and of second reporter translation, and is conferred by the IRESs of picornaviruses but not of hepatitis C virus. A defective picornavirus IRES with a deletion killing IRES activity but leaving the binding site for initiation factor eIF4G intact retains translation enhancement activity. Translation enhancement on a capped mRNA is disabled by m(7)GDP. In addition, the C-terminal fragment of eIF4G can confer translation enhancement also on uncapped mRNA. We conclude that whenever eIF4F has been captured to a dicistronic mRNA by binding to a picornavirus IRES via its eIF4G moiety, it can be provided in cis to the 5'-end of the RNA and there stimulate translation initiation, either by binding to the cap nucleotide using its eIF4E moiety or by binding to the RNA cap-independently using its eIF4G moiety.  相似文献   

6.
Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253–302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with the human 40S ribosomal subunit. For this purpose, two RNA derivatives were used that bore a photoactivatable perfluorophenyl azide cross-linker. In one derivative the cross-linker was at the nucleotide A296 in hairpin IIIe, and in the other at G87 in domain II. Site-specific introduction of the cross-linker was performed using alkylating derivatives of oligodeoxyribonucleotides complementary to the target RNA sequences. No cross-links with the rRNA were detected with either RNA derivative. The RNA with the photoactivatable group at A296 cross-linked to proteins identified as S5 and S16 (major) and p40 and S3a (minor), while no cross-links with proteins were detected with RNA modified at G87. The results obtained indicate that hairpin IIIe is located on the solvent side of the 40S subunit head on a site opposite the beak.  相似文献   

7.
The late polyadenylation signal of simian virus 40 functions with greater efficiency than the early polyadenylation signal, in turn affecting steady-state mRNA levels. Two chloramphenicol acetyltransferase (CAT) transient expression vectors, pL-EPA and pL-LPA, that differ only in their polyadenylation signals were constructed by using the early and late polyadenylation signals, respectively. In transfections of Cos, CV-1P, or HeLa cells and subsequent Northern blot analysis of CAT-specific RNA, approximately five times more steady-state CAT mRNA was produced in transfections with pL-LPA than with pL-EPA. The basis for this difference was not related to the specific promoter used or to RNA stability. Overall, the difference in steady-state mRNA levels derived from the two plasmids appeared to be attributable to intrinsic properties of the two polyadenylation signals, resulting in distinctly different cleavage and polyadenylation efficiencies. Additionally, we found that the utilization of the late polyadenylation site was dramatically reduced by deletion of sequences between 48 and 29 nucleotides 5' of the AAUAAA hexanucleotide. This reduction of mRNA levels was shown not to be caused by altered stability of mutant precursor RNAs or mRNAs, suggesting that these upstream sequences constitute an element of the late polyadenylation signal and may cause, at least to some extent, the greater efficiency of utilization of the late polyadenylation site.  相似文献   

8.
9.
10.
We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex.  相似文献   

11.
The use of internal ribosome entry sites (IRESs) is one of the unorthodox mechanisms exploited by viruses to initiate the translation of internal genes. Herein, we report a plant virus exploiting an IRES and its 3'-untranslated region (UTR) to express its internal genes, notably the 3'-proximal viral coat protein gene. Hibiscus chlorotic ringspot virus (HCRSV), a positive-strand non-polyadenylated RNA virus, was demonstrated to harbor a unique 100-nucleotide (nt) IRES, located 124 nt upstream of the coat protein gene, that could function in wheat germ extract, rabbit reticulocyte lysate, and mammalian cells. In comparison with other known IRESs of picornaviruses and eukaryotic mRNAs, this 100-nt IRES is distinctively short and simple. The IRES activity was tested in homologous and heterologous bicistronic constructs, and the expression of the 3'-proximal gene was enhanced when the 3'-UTR was present. When the IRES element was bisected, each half still possessed IRES activity and could initiate internal translation on its own. Site-directed mutagenesis and deletion analyses revealed that the primary sequence within the 5' half was crucial for IRES activity, whereas the primary sequence of the second half and a GNRA motif were non-essential. To our knowledge, this is the first report describing a mechanism whereby an IRES, located in the 3' portion of the virus genome, co-operates with the 3'-UTR to enhance gene expression differentially.  相似文献   

12.
13.
2-Aminobenzoxazoles have been synthesized as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The compounds were designed to explore the less basic benzoxazole system as a replacement for the core scaffold in previously discovered benzimidazole viral translation inhibitors. Structure–activity relationships in the target binding of substituted benzoxazole ligands were investigated.  相似文献   

14.
The retroviral genomic RNA is the messenger for the synthesis of the group-specific antigen (gag) and polymerase precursors of the major structural proteins and enzymes of the virion. The 5'-untranslated leader of the simian immunodeficiency virus (SIV) genomic RNA is formed of highly structured domains involved in key steps of the viral life cycle. Thus, the presence of stable RNA structures between the 5'-cap and the gag start codon are thought to strongly inhibit scanning of a 43 S preinitiation ribosomal complex. This prompted us to look for an alternative to the canonical ribosome scanning. By using a standard bicistronic assay in the rabbit reticulocyte lysate, we show that the SIVmac 5'-leader contains an internal ribosome entry segment (IRES) and that gene expression driven by this IRES is stimulated upon cleavage of eukaryotic initiation factor 4G. Deletion analysis revealed that the sequence between the major splice donor and the gag AUG codon is required for IRES activity. DNA transfection and viral transduction experiments in both NIH-3T3 and COS-7 cells confirmed that translation driven by the SIV leader is IRES-dependent and thus insensitive to the immunosuppressant rapamycin. Identification of an IRES in SIV is of particular interest for the understanding of lentivirus replication and also for the design of novel lentiviral vectors suitable for gene transfer.  相似文献   

15.
Several retroviruses have recently been shown to promote translation of their gag gene products by internal ribosome entry. In this report, we show that mRNAs containing the human immunodeficiency virus type 1 (HIV-1) gag open reading frame (ORF) exhibit internal ribosome entry site (IRES) activity that can promote translational initiation of Pr55(gag). Remarkably, this IRES activity is driven by sequences within the gag ORF itself and is not dependent on the native gag 5'-untranslated region (UTR). This cap-independent mechanism for Pr55(gag) translation may help explain the high levels of translation of this protein in the face of major RNA structural barriers to scanning ribosomes found in the gag 5' UTR. The gag IRES activity described here also drives translation of a novel 40-kDa Gag isoform through translational initiation at an internal AUG codon found near the amino terminus of the Pr55(gag) capsid domain. Our findings suggest that this low-abundance Gag isoform may be important for wild-type replication of HIV-1 in cultured cells. The activities of the HIV-1 gag IRES may be an important feature of the HIV-1 life cycle and could serve as a novel target for antiretroviral therapeutic strategies.  相似文献   

16.
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical for activity. However, the presence of an IRES RNA tertiary fold and its functional relevance have not been established. Using chemical and enzymatic probes of the HCV IRES RNA in solution, we show that the IRES adopts a unique three-dimensional structure at physiological salt concentrations in the absence of additional cofactors or the translation apparatus. Folding of the IRES involves cooperative uptake of magnesium and is driven primarily by charge neutralization. This tertiary structure contains at least two independently folded regions which closely correspond to putative binding sites for the 40 S ribosomal subunit and initiation factor 3 (eIF3). Point mutations that inhibit IRES folding also inhibit its function, suggesting that the IRES tertiary structure is essential for translation initiation activity. Chemical and enzymatic probing data and small-angle X-ray scattering (SAXS) experiments in solution show that upon folding, the IRES forms an extended structure in which functionally important loops are exposed. These results suggest that the 40 S ribosomal subunit and eIF3 bind an HCV IRES that is prefolded to spatially organize recognition domains.  相似文献   

17.
The simian virus 40 (SV40) 19S late mRNA is polycistronic, encoding multiple late proteins: agnoprotein, VP2, and VP3. We constructed a chloramphenicol acetyltransferase (CAT) transient expression vector in which the SV40 sequences between nucleotides 5171 and 1046 (via the SV40 origin of replication and including the late promoter) were inserted 5' to the cat gene; therefore, the AUG for CAT expression occurs after the AUGs for agnoprotein, VP2, and VP3. CAT enzyme activity assayed after transfection of these constructions indicates the level of CAT AUG utilization and, therefore, can be used as a measure of the ability of prior AUGs to intercept scanning ribosomes. Specifically, deletions and point mutations of the viral AUGs resulted in increased CAT enzyme activity owing to increased utilization of the downstream CAT AUG. To compare a variety of mutants, we used the levels of increase to calculate the translational efficiency of the viral AUGs. Some of our data agree with predictions of the modified scanning model (MSM). Little variation in downstream CAT AUG utilization was noted regardless of whether the VP2 AUG (in a weak MSM sequence context) was intact or removed. Hence, a scanning ribosome may easily bypass it. Similar analysis of the VP3 AUG (in a favorable MSM sequence context) demonstrated that it could efficiently intercept ribosomes prior to the downstream AUG. Overall, these data indicate that the structure of the 19S late mRNA and the relative efficiency of translational start codon utilization can account for the VP3/VP2 ratio found in infected cells. The agnoprotein reading frame, depending on how the mRNA precursor is spliced, is either not contained in the mRNA or is terminated near the VP2 AUG. Under these conditions, the ability of the agnoprotein AUG to block downstream CAT AUG utilization was found to be minimal in our assay. However, we directly tested the blocking ability of the agnoprotein AUG under conditions in which the reading frame terminated well after the CAT AUG. Although the agnoprotein AUG lies in a very good sequence context, this direct analysis showed that it interfered minimally with utilization of the CAT AUG when under the control of the SV40 late promoter. However, expected high levels of interference were regained when the late promoter was replaced with the Rous sarcoma virus long terminal repeat.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5' untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5' UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a "dormant" IRES that becomes activated by viral infection and cellular stress.  相似文献   

19.
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.  相似文献   

20.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号