首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Bi3+,Eu3+‐doped BaMoO4 phosphors was synthesized using a hydrothermal method. The crystal structure, morphology and optical properties of the phosphors were studied using X‐ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) measurements. Three different particle morphologies were detected in the SEM observation. The energy dispersive spectroscopy (EDS) results indicated that the solubility of Bi3+ in spherical or rugby‐like BaMoO4 particles was very low and the excess Bi3+ element was cumulated in the irregular particles. Characteristic emissions of Eu3+ ions (5D0 → 7FJ; J = 0, 1, 2, 3, 4) were observed under excitation in ultraviolet (UV) light, with the most intense transition being the 5D0 → 7F2 transition. Energy transfer from MoO42? and Bi3+ to Eu3+ can be readily achieved. Red emission intensity of Eu3+ was enhanced by a factor of two by co‐doping with a small amount of Bi3+. Optical properties as a function of Bi3+ content were studied and the optimum Bi3+ content in BaMoO4 nanocrystals was determined to be 0.4 mol%.  相似文献   

2.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

3.
A solid‐state reaction route‐based LiTi2 ? xEux(PO4)3 was phosphor synthesized for the first time to evaluate its luminescence performance by excitation, emission and lifetime (τ) measurements. The LiTi2 ? xEux(PO4)3 phosphor was excited at λexci. = 397 nm to give an intense orange–red (597 nm) emission attributed to the 5D07F1 magnetic dipole (ΔJ = ±1) transition and red (616 nm) emission (5D07F2), which is an electric dipole (ΔJ = ±2) transition of the Eu3+ ion. Beside this, excitation and emission spectra of host LiTi2(PO4)3 powder were also reported. The effect of Eu3+ concentration on luminescence characteristics was explained from emission and lifetime profiles. Concentration quenching in the LiTi2 ? xEux(PO4)3 phosphor was studied from the Dexter's model. Dipole–quadrupole interaction is found to be responsible for energy transfer among Eu3+ ions in the host lattice. The LiTi2 ? xEux(PO4)3 phosphor displayed a reddish‐orange colour realized from a CIE chromaticity diagram. We therefore suggest that this new phosphor could be used as an optical material of technological importance in the field of display devices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Eu3+‐doped polystyrene and polyvinylidene fluoride (PVDF/Eu3+ and PS/Eu3+) nanofibers were made using electrospinning. These fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR), energy dispersive spectroscopy (EDX) and photoluminescence (PL). Spectral analysis of PVDF/Eu3+ and PS/Eu3+ nanofibers was based on their emission spectra. A bright red emission was noticed from Eu3+ that was assigned to the hypersensitive 5D0 → 7F2 transition. The enhanced intensity ratios of 5D0 → 7F2 to 5D0 → 7F1 transitions in the nanofibers indicated a more polarized chemical environment for the Eu3+ ions and greater hypersensitivity for the 5D0 → 7F2 transition, which showed the potential for application in various polymer optoelectronic devices. The Eu3+‐doped polymer (PVDF/Eu3+ and PS/Eu3+) nanofibers are suitable for the photoluminescent white light fabric design of smart textiles. This paper focuses on the potential application of smart fabrics to address challenges in human life.  相似文献   

5.
Eu3+‐activated Y(P,V)O4 phosphors were prepared by the EDTA sol‐gel method, and the corresponding morphologies and luminescent properties were investigated. The sample particles were relatively spheroid with size of 2–3 µm and had a smooth surface. The excitation spectra for Y(P,V)O4:Eu3+ consisted of three strong excitation bands in the 200–350 nm range, which were attributed to a Eu3+‐ O2? charge‐transfer band and 1A1?1 T1/1 T2 transitions in VO43?. The as‐synthesized phosphors exhibited a highly efficient red luminescence at 613 nm due to the Eu3+ 5D0?7 F2 electric dipole transition. With the increase in the V5+/P5+ ratio, the luminescence intensity of the red phosphor under UV excitation was greatly improved due to enhanced VO43? → Eu3+ energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Ru Liu  Xigui Wang 《Luminescence》2020,35(1):114-119
Eu3+‐doped 6LaPO4–3La3PO7–2La7P3O18 red luminescent phosphors were synthesized by co‐deposition and high‐temperature solid‐state methods and its polyphase state was confirmed by X‐ray diffraction analysis. Transmission electron microscopy showed the grain morphology as a mixture of rods and spheres. Luminescence properties of the phosphor were investigated and its red emission parameters were evaluated as a function of Eu3+ concentration (3.00–6.00 mol%). Excitation spectra of 6LaPO4–3La3PO7–2La7P3O18:Eu3+ showed strong absorption bands at 280, 395, and 466 nm, while the luminescence spectra exhibited prominent red emission peak centred at 615 nm (5D07F2) in the red region. CIE chromaticity coordinates of the 6LaPO4–3La3PO7–2La7P3O18:5%Eu3+ phosphor were (0.668, 0.313) in the red region, and defined its potential application as a red phosphor.  相似文献   

7.
In this study, Li6Y1–xEux(BO3)3 phosphor was successfully synthesized using a modified solid‐state diffusion method. The Eu3+ ion concentration was varied at 0.05, 0.1, 0.2, 0.5 and 1 mol%. The phosphor was characterized for phase purity, morphology, luminescent properties and molecular transmission at room temperature. The XRD pattern suggests a result closely matching the standard JCPDS file (#80‐0843). The emission and excitation spectra were followed to discover the luminescence traits. The excitation spectra indicate that the current phosphor can be efficiently excited at 395 nm and at 466 nm (blue light) to give emission at 595 and 614 nm due to the 5D07Fj transition of Eu3+ ions. Concentration quenching was observed at 0.5 mol% Eu3+ in the Li6Y1–xEux(BO3)3 host lattice. Strong red emission with CIE chromaticity coordinates of phosphor is x = 0.63 and y = 0.36 achieved with dominant red emission at 614 nm the 5D07 F2 electric dipole transition of Eu3+ ions. The novel Li6Y1–xEux(BO3)3 phosphor may be a suitable red‐emitting component for solid‐state lighting using double‐excited wavelengths, i.e. near‐UV at 395 nm and blue light at 466 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Thin films of lanthanide orthoniobate LnNbO4 (LnNO) and orthotantalate LnTaO4 (LnTO), (Ln = Nd, Sm, Eu) were fabricated using the sol–gel method with subsequent spin-coating on the PbZrO3/Al2O3 substrate and annealing at 1000°C. X-ray diffraction patterns showed monoclinic M-LnNbO4 or M´-LnTaO4, which coexists with the orthorhombic or tetragonal phase. X-ray photoelectron spectroscopy demonstrated the presence of Nd3+, Sm3+/Sm2+ and Eu3+/Eu2+ ions. The luminescence properties of polymorphic films were investigated. Excitation spectra of PbZrO3 interlayer represented broad bands at 410 and 550 nm that were assigned to charge transfer bands (CTB). In all films, the CTB broad band at ~275 nm related to charge transfer transition of Ln3+→O2− and NbO43− or TaO43− groups. In excitation spectra, 4I9/24G5/2 (Nd3+), 6H5/26P3/2 (Sm3+) and 7F05L6 (Eu3+) transitions (at 585, 402 and 395 nm), respectively were found to be more intense than any other Ln3+ transition. The emission spectra showed narrow and intense bands at 1065, 600, and 614 nm that were ascribed to Nd3+, Sm3+, and Eu3+ 4f–f intraconfigurational transitions 4F3/24I11/2, 4G5/26H7/2, and 5D07F2, respectively. The excellent luminescence properties of films make them new potential groups for visible and/or near-infrared applications such as sensors and imaging equipment.  相似文献   

9.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

10.
The compound Na3SO4Cl X (X = Ce3+, Eu3+ or Dy3+) prepared by the wet chemical method was studied for its photoluminescence (PL) and energy transfer characteristics. The PL from Na3SO4Cl:Ce3+ shows strong emission at 322 nm at an excitation of 272 nm. Therefore, an efficient Ce3+ → Dy3+, Eu2+ → Dy3+ and Eu2+ → Eu3+ energy transfer had taken place in this host. The Dy3+ emission caused by Ce3+ → Dy3+ energy transfer under ultraviolet (UV) wavelengths peaked at around 477 nm and 572 nm due to 4 F9/26H15/2 and 6H13/2 transitions with yellow–orange emission in the Na3SO4Cl lattice. An intense Dy3+ emission was observed at 482 and 576 nm caused by the Eu2+ → Dy3+ energy transfer process and due to 4 F9/26H15/2 and 4 F9/26H13/2 transitions respectively. The Eu3+ blue to red light emission caused by the Eu2+ → Eu3+ energy transfer peaked at 593 nm and 617 nm due to 5D05D3 transitions. The presence of trivalent Eu in Na3SO4Cl suggested the presence of Eu3+ in the host compound that occupied two different lattice sites and that peaked at 593 and 617 nm due to 5D07 F1 and 5D07 F2 transitions respectively. The trivalent europium ion is very useful for studying the nature of metal coordination in various systems due to its non‐degenerate emitting 5D0 state. The present paper discusses the photoluminescence characteristics of Eu2+ → Dy3+ and Eu2+ → Eu3+ energy transfer. This compound may be useful as a lamp phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A new Eu3+‐substituted CsK2Y[VO4]2 glaserite‐type orthovanadate phosphor was synthesized by the conventional high temperature solid‐state reaction method. The phase purity was confirmed by powder X‐ray diffraction study and it reveals that all the compositions crystallize in the hexagonal structure. The morphology and elemental composition were measured by FE‐SEM with Energy Dispersive Analysis Of X Rays (EDAX). The band gap is determined by diffuse reflectance spectra. The self‐activated luminescence of the host and Eu3+‐substituted luminescence behaviours were studied in detail by photoluminescence spectra. The host CsK2Y[VO4]2 shows green emission, whereas the Eu3+‐substituted compositions show red emission. Effect of Eu3+ concentrations on the photoluminescence behaviour were also been studied. The Eu3+‐doped samples show not only several sharp emission lines but also a broad emission band due to presence of the [VO4]3? in the host, which clearly indicates that there is incomplete energy transfer from (VO4) charge transfer band to Eu3+. The life time of the phosphors also been studied. The Commission Internationale de l'Eclairage (CIE) chromaticity colour coordinates were calculated and it is very much closer to the National Television Standard Committee (NTSC) standards. These investigations evidently reveal that the self‐activated and Eu3+‐activated phosphors show a great potential applications as a red phosphor for solid‐state lighting includes white light‐emitting diodes (wLEDs).  相似文献   

12.
The solution combustion technique was used to synthesize MLaAl3O7 (M = Ba, Ca, Mg, and Sr) nanophosphors‐doped with Eu3+ using metal nitrates as precursors. The photoluminescence (PL) emission spectra exhibited three peaks at 587–591, 610–616, and 653–654 corresponding to 5D07F1, 5D07F2, and 5D07F3 transitions, respectively. Upon excitation at 254 nm, these nanophosphors displayed strong red emission with the dominant peak attributed to the 5D07F2 transition of Eu3+. The materials were further heated at 900 and 1050°C for 2 h to examine the consequence of temperature on crystal lattice and PL emission intensity. X‐ray diffraction (XRD) analysis proved that all the synthesized materials were of a crystalline nature. CaLaAl3O7 material has a tetragonal crystal structure with space group P421m. Scherer's equation was used to calculate the crystallite size of synthesized phosphors using XRD data. A Fourier transformation infrared study was used to observe the stretching vibrations of metal–oxygen bonds. Infrared peaks for stretching vibrations corresponding to lanthanum–oxygen and aluminium–oxygen bonds were found at 582 and 777 cm–1 respectively for CaLaAl3O7 phosphor material. Transmission electron microscopy images were used to determine the size of particles (18–37 nm for the as‐prepared materials) and also to analyze the three‐dimensional view of these materials. The experimental data indicate that these materials may be promising red‐emitting nanophosphors for use in white light‐emitting diodes.  相似文献   

13.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Strontium–aluminium–bismuth–borate glasses (SAlBiB) doped with different concentrations of Ho3+ were prepared using conventional melt quenching technique and their structural and optical properties investigated. X‐ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd–Ofelt (J‐O) theory was applied to evaluate J‐O intensity parameters, Ωλ (λ = 2, 4 and 6). Using J‐O intensity parameters, radiative properties such as spontaneous transition probabilities (AR), branching ratios (βR) and radiative lifetimes (τR) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, 5S2(5F4)→5I8 was observed. Emission peak positions (λP), effective bandwidths (Δλeff) and stimulated emission cross‐sections (σp) were calculated for the observed emission transitions, 5F35I8, 5S2(5F4)→5I8 and 5F55I8 of Ho3+ in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho3+ has better emission properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The spectroscopic and photoluminescence characteristics of trivalent dysprosium (Dy3+)‐doped Sr0.5Ca0.5TiO3 phosphor materials synthesized via solid‐state reaction method were studied. The X‐ray diffraction profile confirmed the orthorhombic perovskite structure of the prepared samples. Judd–Ofelt analysis was carried out to obtain the intensity parameters and predicted radiative properties of Sr0.5Ca0.5TiO3:2wt%Dy3+. The photoluminescence spectrum of Dy3+‐doped Sr0.5Ca0.5TiO3 showed three emission peaks at 481, 574 and 638 nm corresponding to 4F9/26H15/2, 4F9/26H13/2 and 4F9/26H11/2 transitions respectively. The variation of luminescence intensity with different excitation wavelengths and Dy3+ concentrations is discussed. The decay profiles of 4F9/2 excited levels of Dy3+ ions show bi‐exponential behaviour and also a decrease in average lifetime with increase in Dy3+ concentration. Yellow to blue luminescence intensity ratio, CIE chromaticity co‐ordinates and correlated color temperature were also calculated for different concentrations of Dy3+‐doped Sr0.5Ca0.5TiO3 phosphor at different λex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Using the melt quenching technique, a lithium zinc borate glass (LZB) system with trivalent dysprosium ions (Dy3+) was synthesized, and the luminescence and lasing properties of these materials were examined for the generation of white light. Structural investigation through X-ray diffraction revealed that the prepared glass had an amorphous nature. The optimized glass containing 0.5 Dy3+ had a direct optical band gap of 2.782 eV and an indirect optical band gap of 3.110 eV. A strong excitation band at 386 nm (6H15/24I13/2) was recognized in the ultraviolet (UV) light region of its excitation spectrum. Emission bands could be seen in the photoluminescence spectrum at 659, 573, and 480 nm under the 386 nm excitation. These transitions of emission resembled electronic transitions such as (4F9/26H11/2), (4F9/26H13/2), and (4F9/26H15/2). In a pristine glass matrix, the higher intensity ratio of yellow to blue can result in the production of white light. The optimized Dy3+ ion concentration was observed to be 0.5 mol%. In addition, an analysis of lifetime decay was conducted for all synthesized glasses, and their decay trends were systematically investigated. Noticeably, we assessed the photometric parameters and found that they were close to the white light standard. Furthermore, a cytotoxicity study was carried out using lung fibroblast (WI-38) cell lines for the optimized 0.5Dy3+-doped LZB glass and it appeared to be noncytotoxic. It is clear from the results that the noncytotoxic LZB glass doped with 0.5 Dy3+ ions could be a suggestive choice for the manufacture of white light-emitting diodes and lasers using near-UVs.  相似文献   

17.
A high intensity 464 nm excitable ZnWO4:Eu3+ red‐emitting phosphor for warm white lighting applications was prepared using a solid‐state reaction method by varying the dopant Eu3+ concentration. Crystalline purity and phase identification was confirmed and revealed using powder X‐ray diffraction and Rietveld refinement analysis. The surface morphology of Zn1‐xEuxWO4 (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) was examined using scanning electron microscopy (SEM) techniques. From SEM analysis, the ZnWO4:Eu3+ phosphor prepared at 1–3% molar Eu3+ concentrations exhibited a small pebble‐like morphology with a smooth surface. On increasing the molar concentration of Eu3+ to >3%, the pebble stone morphology disappeared and a large, smooth irregular polygon‐shaped granular‐like morphology was obtained. Of the higher mol% Eu3+, the 4% Eu3+‐doped ZnWO4 showed the best photoluminescence properties with high intensity and sharp excitation at 395 and 464 nm, followed by red emission centred at 615 nm with excellent CIE coordinates (x = 0.58 and y = 0.41) in the core red region. Elemental composition and chemical state analysis were carried out for the 4% Eu3+‐doped ZnWO4 phosphor using X‐ray photoelectron spectroscopy and energy dispersive X‐ray spectroscopy studies. Based on all the above analyses, the Eu3+‐doped ZnWO4 phosphor was found to be a very efficient red‐emitting phosphor under near‐UV light as well as under visible light excitation and could be used for white LED and field emissive displays applications.  相似文献   

18.
Mikhail Tsvirko 《Luminescence》2022,37(8):1387-1394
The luminescence and absorption spectra of the lanthanide ions in solids and coordination compounds are characterized by sharp pure electronic lines, which are accompanied by much weaker lines of vibronic transitions. The vibronic spectroscopy is a good probing tool for investigations of the properties of surrounding ion ligands. The lanthanides formates are efficient luminescent crystals and can be viewed as the elementary type in the whole class of the oxygen-containing lanthanide coordination compounds. The intensity of vibronic transitions in spectra of luminescence and excitation europium (5D07F2, 7F05D2), terbium (7F65D4), gadolinium (6P7/28S7/2) in anhydrous formates of the type Ln(HCOO)3 (Ln = Eu, Tb, Gd) and Y(HCOO)3.2H2O doped with Eu3+ and Tb3+ (C ~1 mol%) are reported. Also, the infrared and Raman spectra were obtained for the same compounds. Related integral intensity vibronic sidebands depend on the type of electronic transition of the same ion and varies for the same electronic transitions in different crystals. The obtained experimental data referring to the rate constants of vibronic transitions and intensity distribution in vibronic spectra on normal vibrations of the formate groups are in agreement with the predictions based on the Stavola–Dexter theory of cooperative vibronic transitions.  相似文献   

19.
A series of Eu3+‐activated NaLi2PO4 novel phosphors was synthesized by the solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by near‐UV (370–410 nm) light. The emission spectra exhibit strong reddish‐orange performance, which is due to the 5D07FJ transitions of Eu3+ ions. The orange emission from transition 5D07F1 is dominant over that of 5D07F2. The concentration quenching of Eu3+ was observed in NaLi2PO4:Eu3+ when the Eu concentration was at 1 mol%. The impact of doping Eu3+ and photoluminescence properties were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An inorganic NaMgSO4F fluoride material was prepared by the wet chemical method and studied for its photoluminescence (PL) and resonant–non‐resonant energy transfer (RET and NORET) capabilities between Ce3+ → Tb3+, Ce3+ → Eu3+ and Ce3+ → Dy3+ rare earth ions. The Tb3+ emission for Ce3+ → Tb3+ transfers under ultraviolet (UV) wavelengths peaked at 491, 547, and 586 nm, for excitation at 308 nm due to 5D4 → 7FJ (J = 4, 5, 6) transitions. Eu emission spectra were observed at 440 nm (Eu2+), 593 nm and 616 nm (Eu3+) recorded for different concentrations of materials, whereas Dy3+ emission from Ce3+ → Dy3+ transfer under UV wavelengths peaked at 485 nm and 577 nm due to 4F9/2 → 6H15/2 and 6H13/2 transitions. The purpose of the present study is to understand the RET and NORET effects of Tb3+, Eu3+ and Dy3+ co‐doping in a NaMgSO4F:Ce3+ luminescent material, which could be used as a green‐emitting material for lamp phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号