首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl. However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol. In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plant-specific.  相似文献   

2.
We developed two species-specific PCR assays for rapid and accurate detection of the pathogenic fungi Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in diseased plant tissues and soil. Based on differences in internal transcribed spacer (ITS) sequences of Fusarium spp. and Mycosphaerella spp., two pairs of species-specific primers, Fn-1/Fn-2 and Mn-1/Mn-2, were synthesized. After screening 24 isolates of F. oxysporum f. sp. niveum, 22 isolates of M. melonis, and 72 isolates from the Ascomycota, Basidiomycota, Deuteromycota, and Oomycota, the Fn-1/Fn-2 primers amplified only a single PCR band of approximately 320 bp from F. oxysporum f. sp.niveum, and the Mn-1/Mn-2 primers yielded a PCR product of approximately 420 bp from M. melonis. The detection sensitivity with primers Fn-1/Fn-2 and Mn-1/Mn-2 was 1fg of genomic DNA. Using ITS1/ITS4 as the first-round primers, combined with either Fn-1/Fn-2 and or Mn-1/Mn-2, two nested PCR procedures were developed, and the detection sensitivity increased 1000-fold to 1ag. The detection sensitivity for the soil pathogens was 100-microconidia/g soil. A duplex PCR method, combining primers Fn-1/Fn-2 and Mn-1/Mn-2, was used to detect F. oxysporum f. sp. niveum and M. melonis in plant tissues infected by the pathogens. Real-time fluorescent quantitative PCR assays were developed to detect and monitor the pathogens directly in soil samples. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring as well as guide plant disease management.  相似文献   

3.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

4.
Screening of germplasm/varieties was made to find out the sources of resistance against F. oxysporum f. sp. lini. Screening was conducted on 78 available germplasm/varieties during 2003–2004 and 2004–2005 in rabi season of linseed under natural conditions. Out of total 78 entries, 27 cultures were found to be resistant to disease as the disease incidence in these cultivars were between 0 and 10%. Twenty-three cultivars fell in moderately resistant category with 10.1–25% wilt incidence. Nine genotypes were found moderately susceptible sho'wing 25.1–50% disease incidence, 14 genotypes were found susceptible showing 50.1–75% and 6 genotypes were found highly susceptible to disease (above 75%).  相似文献   

5.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil-borne disease of guava in India. Forty-two isolates each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs) collected from different agro climatic zones of India showing pathogenicity were subjected to estimate the genetic and molecular characterisation in terms of analysis of microsatellite marker studies. Out of eight microsatellite markers, only four microsatellite markers, viz. MB 13, MB 17, RE 102 and AY212027 were amplified with single band pattern showing the character of identical marker for molecular characterisation and genetic identification. Microsatellite marker MB 13 was amplified in F. oxysporum f. sp. psidii and F. solani isolates. Product size of 296 bps and 1018 bps were exactly amplified with a single banding pattern in all the isolates of F. oxysporum f. sp. psidii and F. solani, respectively. Microsatellite markers, viz. MB 17, RE 102 and AY212027 were also exactly amplified with a single banding pattern. MB 17 was amplified in F. oxysporum f. sp. psidii isolates with a product size of 300 bp. RE 102 and AY212027 were amplified in F. solani isolates with the product size of 153 bp and 300 bp, respectively. Therefore, amplified microsatellite marker may be used as identifying DNA marker.  相似文献   

6.
7.
A survey of 116 districts of nine lentil growing states covering 603 farmers' fields revealed a range of 0.7–9.3% mean plant mortality at reproductive stages in different lentil growing states of the country. The overall mean mortality was 6.3%. The main pathogens found associated with plant mortality at this stage were Fusarium oxysporum f. sp. lentis (62.0%), Rhizoctonia bataticola (25.2%) and Sclerotium rolfsii (9.8%). The minor involvement of 1.8% was that of F. solani, F. chlamydosporum. F. equisetii, and R. solani. For the first time a national scenario of lentil wilt-root rot incidence at the crucial reproductive stage and their associated pathogens is reported here.  相似文献   

8.
Fusarium oxysporum f. sp. conglutinans (FOC) causes Fusarium wilt, a disease of cabbage that has brought about significant economic loss throughout northern China since it was first detected in 2001. To characterize the Chinese FOC isolates, we compared the cultural characteristics, pathogenicity and races between the Chinese isolates and the type strains (race 1: 52,557 and race 2: 58,385). The Chinese FGL‐03‐6 isolate had cultural characteristics similar to those of strain 52,557, including colony growth rate, colony and spore characteristics and responses to temperature changes, while the strain 58,385 grew faster, produced more pigment and spores and was more adaptable to temperature fluctuations. The lethal temperature for all strains was 60°C, and the optimal temperatures for pathogen growth on potato dextrose agar and pathogenicity on plants were 25°C and 25 to 30°C, respectively. Tests for race and pathogenicity indicated that different cabbage cultivars had similar resistance reactions to FGL‐03‐6 and 52,557. However, the pathogenicity of FGL‐03‐6 was similar to that of 58,385, which infected quickly and caused more severe disease symptoms. This study further provides information regarding characterizing different strains of F. oxysporum f. sp. conglutinans.  相似文献   

9.
Fusarium wilt caused by Fusarium oxysporum f.sp. ciceris (Foc) is the most important soilborne disease of chickpea in the Sudan and many other countries. A total of 76 Foc isolates from six different chickpea‐growing states in the Sudan have been collected in this study to investigate the genetic diversity of Sudanese Foc isolates. Additional 14 Foc isolates from Syria and Lebanon were included in this study. All isolates were characterized using four random amplified polymorphic DNA (RAPD), three simple sequence repeats (SSR), five sequence‐characterized amplified region (SCAR) primers and three specific Foc genome primers. Based on the similarity coefficient, the results indicated two major clusters included seven subclusters. The isolates from the Sudan were grouped as identified as races 0, 2 and unknown races. The isolates from Syria and Lebanon were grouped together as they identified as races 1B/C and 6, respectively. This study identified a new race Foc (race 0) in the Sudan. The results of this study will be useful for breeders to design effective resistance breeding program in chickpea in the Sudan.  相似文献   

10.
A study was carried out to test direct and indirect antagonistic effect against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and plant growth-promoting (PGP) traits of bacteria isolated from rhizosphere soils of chickpea (Cicer arietinum L.). A total of 40 bacterial isolates were tested for their antagonistic activity against FOC and of which 10 were found to have strong antagonistic potential. These were found to be Streptomyces spp. (five isolates) and Bacillus spp. (five isolates) in the morphological and biochemical characterisation and 16S rDNA analysis. Under both greenhouse and wilt sick field conditions, the selected Streptomyces and Bacillus isolates reduced disease incidence and delayed expression of symptoms of disease, over the non-inoculated control. The PGP ability of the isolates such as nodule number, nodule weight, shoot weight, root weight, grain yield and stover yield were also demonstrated under greenhouse and field conditions over the non-inoculated control. Among the ten isolates, Streptomyces sp. AC-19 and Bacillus sp. BS-20 were found to have more potential for biocontrol of FOC and PGP in chickpea. This investigation indicates that the selected Streptomyces and Bacillus isolates have the potential to control Fusarium wilt disease and to promote plant growth in chickpea.  相似文献   

11.
During the September‐December season of 1990, severe symptoms of Fusarium wilt were for the first time observed on a popular climbing bean (Phaseolus vulgaris L.) cultivar. G 2333. introduced within the previous 5 years. Seventy‐three bean genotypes were screened for resistance lo the disease, using artificial inoculation. The effect of inoculation density on the reaction of four selected genotypes was also investigated. Of the 29 climbing bean genotypes evaluated, 19 were resistant, including 11 of the 15 pre‐release or released cultivars. Of the 44 bush bean cultivars evaluated, 28 were resistant, five were intermediate and 11 were susceptible. All susceptible cultivars showed vascular discoloration. In both susceptible and resistant genotypes, the fungus spread almost equally from the entry points in inoculated roots to the base of the plants, but colonization and vertical spread within the vascular system were markedly less in resistant than in susceptible cultivars. At 20 and 30 cm above soil level, the fungus was only recovered from susceptible cultivars. Increasing inoculum density from 102 to 107 conidia/ml did not affect the resistance of cultivars RWR 950 and G 685 but. in the susceptible cultivars G 2333 and MLB‐48‐89 A. it resulted in early appearance, high incidence and severity of the disease.  相似文献   

12.
A putative endophytic Bacillus cereus str. S42 (KP993206), recovered from surface-sterilised stems of Nicotiana glauca was assessed in vitro and in vivo for its antifungal potential towards Fusarium oxysporum f. sp. lycopersici (FOL). Pathogen sporulation was significantly inhibited by B. cereus str. S42. FOL mycelial growth was reduced using its whole-cell suspensions, cell-free culture supernatant and chloroform extract. Its extracellular metabolites remained effective after heating at 50–100 °C with a decline in their activity was observed beyond 100 °C, when added with proteinase K and/or after pH adjustment to 2 and 12. Chitinase gene was detected using PCR amplification. Gas chromatography–mass spectrometry analysis of its chloroform extract matched phthalic acid, dibutyl ester with high level of similarity. B. cereus str. S42 cell-free culture supernatant and whole-cell suspensions had significantly suppressed Fusarium wilt severity by 87–96% and enhanced tomato growth by 39–79% compared to FOL-inoculated and untreated control.  相似文献   

13.
构建高寒区大豆低温冷害指标对系统分析高寒区大豆适应气候变化对策、防灾减灾及其他胁迫的协同适应技术具有参考意义。本研究利用1980—2020年黑龙江省大豆低温冷害灾情史料、生育期资料及研究区78个气象站逐日气温资料,采用GIS技术匹配生育期与气象数据,考虑不同生育阶段积温距平、日平均气温低于生育下限温度的持续日数,构建高寒区大豆综合性冷害指数。利用K-S分布拟合检验及置信区间下限值确定阈值方法,构建高寒区大豆关键生育阶段低温冷害等级指标。结果表明: 大豆播种-出苗期,研究区大豆轻度、中度、重度冷害低温指数下限值分别为0.061、0.115、0.237;出苗-开花期分别为0.072、0.152、0.312;开花-成熟期分别为0.133、0.245、0.412。由低温指数反演的黑龙江省大豆低温冷害时间分布与历史灾情记载吻合度很高;空间上表现出较明显的纬度特征,冷害发生频率呈自南向北逐渐增加的趋势。  相似文献   

14.
Nine non-pathogenic bacterial isolates, recovered from Datura metel organs and able to colonise the internal stem tissues of tomato cultivar Rio Grande, were screened for their ability to suppress tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici (FOL), and to enhance plant growth. S33 and S85 isolates tested were found to be the most effective in decreasing Fusarium wilt severity by 94–95% compared to FOL-inoculated and untreated control. A significant enhancement of growth parameters was recorded on tomato plants inoculated or not with FOL. Both isolates were characterised and identified using 16S rDNA sequencing genes as Stenotrophomonas sp. str. S33 (KR818084) and Pseudomonas sp. str. S85 (KR818087). Screened in vitro for their antifungal activity towards FOL, these isolates led to 38.7% and 22.5% decrease in pathogen radial growth and to the formation of an inhibition zone of 12.75 and 8.37?mm respectively. Stenotrophomonas sp. str. S33 and Pseudomonas sp. str. S85 were found to be chitinase-, protease- and pectinase-producing strains but unable to produce hydrogen cyanide. Production of indole-3-acetic acid-like compounds, phosphate solubilising ability and pectinase activity were investigated for elucidating their plant growth-promoting traits and their endophytic colonisation ability.  相似文献   

15.
Fourier transform Raman (FT Raman) and IR (FTIR) and (1)H-NMR spectroscopies coupled with differential scanning calorimetry (DSC) were applied to the characterization of root exudates from two cultivars of gladiolus (Spic Span and White Prosperity) with different degrees of resistance and susceptibility to Fusarium oxysporum gladioli, the main pathogen of gladiolus. This work was aimed at correlating the composition of root exudates with the varietal resistance to the pathogen. Spectroscopic analysis showed that White Prosperity root exudate differs from Spic Span root exudate by a higher relative amount of the aromatic-phenolic and sugarlike components and a lower relative amount of carbonylic and aliphatic compounds. DSC analysis confirmed the spectroscopic results and showed that White Prosperity root exudate is characterized by an aromatic component that is present in a higher amount than in the Spic Span root exudate. The results are discussed in relation to the spore germination tests showing that White Prosperity, which is characterized by a remarkable resistance toward F. oxysporum gladioli, exudes substances having a negative influence on microconidial germination of the pathogen; root exudates from Spic Span, one of the most susceptible cultivars to F. oxysporum gladioli, proved to have no effect. White Prosperity's ability to inhibit conidial germination of F. oxysporum gladioli can be mainly related to the presence of a higher relative amount of aromatic-phenolic compounds.  相似文献   

16.
Sixteen endophytic actinobacteria isolated from roots of native plants were evaluated for their antagonistic potential against soil-borne phytopathogenic fungi. Among them, three strong antagonistic isolates were selected and characterised for in vitro plant-growth-promoting and biocontrol traits, including production of hydrogen cyanide, indole-3-acetic acid and siderophores, chitinase and β-1,3-glucanase activities, and inorganic phosphate solubilisation. In all trials, the strain Streptomyces sp. SNL2 revealed promising features. The selected actinobacteria were investigated for the biocontrol of Fusarium oxysporum f. sp. radicis lycopersici and for growth promotion of tomato (Solanum lycopersicum L. cv. Aïcha) seedlings in autoclaved and non-autoclaved soils. All seed-bacterisation treatments significantly reduced the root rot incidence compared to a positive control (with infested soil), and the isolate SNL2 exhibiting the highest protective activity. It reduced the disease incidence from 88.5% to 13.2%, whereas chemical seed treatment with Thiram® provided 14.6% disease incidence. Furthermore, isolate SNL2 resulted in significant increases in the dry weight, shoot and root length of seedlings. 16S rDNA sequence analysis showed that isolate SNL2 was related to Streptomyces asterosporus NRRL B-24328T (99.52% of similarity). Its interesting biocontrol potential and growth enhancement of tomato seedlings open up attractive uses of the strain SNL2 in crop improvement.  相似文献   

17.
AIMS: Tomato foot and root rot (TFRR), caused by Fusariumoxysporum f. sp. radicis-lycopersici (Forl), is an economically important disease of tomato. The aim of this study was to develop an efficient protocol for the isolation of bacteria, which controls TFRR based on selection of enhanced competitive root-colonizing bacteria from total rhizosphere soil samples. METHODS AND RESULTS: A total of 216 potentially enhanced bacterial strains were isolated from 17 rhizosphere soil samples after applying a procedure to enrich for enhanced root tip colonizers. Amplified ribosomal DNA restriction analysis, in combination with determination of phenotypic traits, was introduced to evaluate the presence of siblings. One hundred sixteen strains were discarded as siblings. Thirty-eight strains were discarded as potential pathogens based on the sequence of their 16S rDNA. Of the remaining strains, 24 performed equally well or better than the good root colonizer Pseudomonas fluorescens WCS365 in a competitive tomato root tip colonization assay. Finally, these enhanced colonizers were tested for their ability to control TFRR in stonewool, which resulted in seven new biocontrol strains. CONCLUSIONS: The new biocontrol strains, six Gram-negative and one Gram-positive bacteria, were identified as three Pseudomonas putida strains and one strain each of Delftia tsuruhatensis, Pseudomonas chlororaphis, Pseudomonas rhodesiae and Paenibacillus amylolyticus. SIGNIFICANCE AND IMPACT OF THE STUDY: We describe a fast method for the isolation of bacteria able to suppress TFRR in stonewool, an industrial plant growth substrate. The procedure minimizes the laborious screens that are a common feature in the isolation of biocontrol strains.  相似文献   

18.
Surveys for incidence of fusarium wilt of chickpea were carried out in six districts of North and South Gondar, and East Gojam administrative zones, Amhara National Regional State in northwestern Ethiopia in 2006–2007 and 2007–2008 main cropping seasons. In each district, five representative peasant administrations (PAs) were selected based mainly on chickpea-growing area coverage, and, in each PA, disease was assessed in five randomly selected farmers’ fields. In the two cropping seasons, the mean incidences recorded in each district were as follows: Gondar Zuria, 34.16% and 34.11%; Dembia, 37.90% and 35.36%; Libo-Kemkem, 34.74% and 28.81%; Fogera, 34.74% and 28.81%; Dejen, 34.74% and 28.81% and Enemay, 33.34% and 37.64%. The result indicated that fusarium wilt is currently highly distributed in all surveyed chickpea-growing areas of northwestern part of Ethiopia. Therefore, possible management options are vital to alleviate the problem.  相似文献   

19.
The mode of inheritance of resistance to Fusarium oxysporum f.sp. cucumerinum races 1 and 2 in Wisconsin-2757 (WI-2757), a gynoecious cucumber (Cucumis sativus L.), was determined by analysing segregation of F1, F2 and BC1 populations of crosses with susceptible cultivar Straight-8. Resistance to either race 1 or race 2 in WI-2757 was conferred by a single dominant gene. In allelism tests, resistance to either race in WI-2757 was determined by the gene Fcu-1, which also confers resistance in line SMR-18.  相似文献   

20.
木霉(Trichoderma spp.)对三种引起大棚蔬菜病害病原菌的影响   总被引:5,自引:0,他引:5  
通过木霉属(Trichoderma) 3菌株与双鸭山蔬菜大棚中的黄瓜枯萎病菌(FusariumoxysporumSchlecht.f.cucumerinum)、黄瓜果腐病菌(PhytophthoracapsiciLeonian)、菜豆叶枯病菌(Cladosporiumsp .)的对峙培养试验,结果表明:绿色木霉1(TrichodermaviridePers.exGray 1)可作为双鸭山蔬菜大棚中的黄瓜枯萎病、黄瓜果腐病、菜豆叶枯病3种病害的生物防治拮抗菌加以利用,该拮抗菌对菜豆叶枯病菌抑制效果最好;绿色木霉2 (Tricho dermaviride 2 )对黄瓜果腐病菌抑制效果最好;而哈茨木霉(TrichodermaharzianumRifai)对以上3种病原菌都有抑制效果,对菜豆叶枯病菌抑制效果最好。从试验结果还可看出,绿色木霉2对黄瓜枯萎病菌和菜豆叶枯病菌的生长有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号