首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
当今世界,肿瘤已经成为威胁人类健康的重大疾病。在肿瘤疾病中,化疗可控制肿瘤的生长和转移,增强放疗的疗效,是治疗肿瘤疾病的主要手段之一。而肿瘤多药耐药是影响化疗药物疗效、引起化疗失败的重要原因,影响肿瘤患者的治愈效果,降低生存率。如何提高化疗的疗效,延长肿瘤患者的寿命成为医学界的难题。纳米载药系统是生物医学领域研究的热点,相对于单一药物,纳米载药体现了许多优越性,具有良好的应用前景。纳米级颗粒更有利于药代动力学,这些纳米载药颗粒通过被动和主动的机制表现出在全身血液循环寿命延长,持续的药物释放动力,使其能更好的在肿瘤细胞中积累而发挥作用,提高化疗的疗效。本文综述了肿瘤多药耐药研究中主要的纳米载体以及它们在逆转多药耐药方面的应用,并展望载药系统的有更多更好的发展趋势。  相似文献   

2.
目的利用发生响应性聚集后的金纳米粒子体系的较强的光热特性,研究其对细菌的体外光热杀伤作用。方法通过Au-S键反应将合成好的多肽A和多肽B分别修饰到金纳米粒子(GNPs)表面,然后等比例混合组成GNPssystem。首先利用动态光散射(DLS)和透射电镜(TEM)研究其在弱酸性条件下的响应性聚集情况,利用多功能酶标仪研究其在在弱酸性条件下的紫外吸收变化;然后为了了解该纳米粒子在菌液中的光热转换情况,分别测定其在弱酸性条件下溶液内和与细菌作用后的温度变化曲线;进一步考察其体外抗菌效果。结果DLS检测到合成的GNPssystem在弱酸性条件下粒径由16nm增大到900nm左右,并在TEM下可见明显的聚集体,并且在650~900nm的紫外吸收信号明显增高。在模拟细菌的弱酸性环境下,GNPssystem在激光照射条件下均实现了溶液和细菌混合溶液的快速升温,且最高温度可达69.8℃,与对照组GNPs-PEG2000相比具有显著的统计学差异;体外抗菌实验结果显示,GNPssystem对金黄色葡萄球菌的杀伤力最强,50μg/mL浓度时就可杀死约50%的细菌;浓度为200μg/mL时基本上可以完全杀死,与对照组GNPs-PEG2000相比较具有显著的统计学差异。结论本研究为GNPs的设计提供了新的思路,为GNPs用于光热治疗提供了新的方法。  相似文献   

3.
目前各种细菌的耐药性问题已引起了科学家们的广泛关注,细菌的多药外排系统是引起细菌多药耐药的主要原因之一。本文着重介绍了与多药耐药相关的两大类多药外排系统(ABC型多药外排系统和次级多药外排系统)各家族成员的结构特点、表达调控和底物范围,以及解决多药外排系统引起耐药性的几项措施。  相似文献   

4.
5.
肝癌多药耐药的产生是多基因、多因素、多途径、多步骤综合作用的复杂过程,因此研究引起肝癌多药耐药的相关因素、作用机制及逆转MDR,提高肝癌化疗效果成为目前肝癌研究的热点,但不同的肝癌耐药细胞株有不同的多药耐药基因表型,如何针对不同的基因表型来逆转肝癌的多药耐药,是临床治疗肝癌需要面对的一个问题.  相似文献   

6.
细菌抗生素多耐系统Mar的研究进展   总被引:2,自引:0,他引:2  
  相似文献   

7.
蛋白激酶C对多药耐药调控作用   总被引:1,自引:0,他引:1  
马强  张振书 《生命的化学》2001,21(4):302-304
化疗是目前治疗恶性肿瘤的主要手段之一 ,尽管新的抗癌药物及化疗方案不断推出 ,但治疗效果仍无显著提高 ,其主要原因之一是肿瘤细胞对化疗药物产生多药耐药 (mul tidrugresistance ,MDR)。MDR是指对一种药物耐药的肿瘤 ,同时对另一些与之化学结构、作用机制完全不同的药物产生交叉耐药。其发生机制复杂 ,其中mdr1基因编码的P 糖蛋白 (P GP)表达是MDR产生的主要机制之一。近年来的研究表明 ,蛋白激酶C(proteinkinaseC ,PKC)参与了调控MDR形成过程。蛋白激酶C是一种钙离子、磷脂依…  相似文献   

8.
结肠癌是常见的消化道恶性肿瘤。对术后患者以及无法采用手术治疗的患者,临床多采用化疗、放疗等综合性治疗方法。随着大量化疗药物在临床的广泛使用,结肠癌多药耐药性成为化疗失败的最主要原因。研究表明,P-糖蛋白(P-glycoprotein, P-gp)作为ATP结合盒(ABC)转运蛋白超家族成员之一,与多种肿瘤的多药耐药相关,其介导的多药耐药已经成为目前研究的热点。本文旨在通过对P-糖蛋白的结构、耐药机制以及逆转P-糖蛋白介导的结肠癌多药耐药新发现进行阐述,引导读者对P-糖蛋白在结肠癌多药耐药中的作用有更深入的了解。  相似文献   

9.
化疗多药耐药是影响宫颈癌化疗疗效的重要因素.目前关于多药耐药(multidmgresistance,MDR)产生机制的研究报道很多,主要包括以下几个方面:(1)典型性多药耐药:如多药耐药基因1(multidrug resistance gene 1,MDRI)及其编码的蛋白P糖蛋白(P-glycoprotein,P-gp)、多药耐药相关蛋白(multidrug resistance-associated protein,MRP)和肺耐药蛋白(lung resistance-related protein,LRP)基因及其编码的蛋白的过度表达;(2)谷胱苷肤-S-转移酶-π的表达;(3)非典型性多药耐药:由拓扑异构酶Ⅱ(Topo Ⅱ)介导的耐药机制;(4)细胞凋亡抑制(例如:突变型P53和癌基因Her-2/neu/C-erbB-2表达增加)等.这些因素之问还可以相互影响、共同作用,造成宫颈癌对多种抗肿瘤药物的耐药[2].本文就多药耐药基因产物在宫颈癌中的研究进展进行综述.  相似文献   

10.
逆转肿瘤多药耐药策略进展   总被引:4,自引:0,他引:4  
多药耐药MDR是肿瘤治疗的一大障碍 ,本文简述了MDR的可能机制与逆转克服策略及开发临床可应用的低毒有效逆转剂的新方向  相似文献   

11.
Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC no. 739) and Proteus vulgaris (MTCC no. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0·2, 0·3 and 0·4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11–14 nm). Antibacterial activities of CuNPs were evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests, cytoplasmic leakage and reactive oxygen species (ROS) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNP–microorganism interaction induces oxidative stress generated by ROS. Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNP-induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents.  相似文献   

12.
Bacterial infections are among the major cause of morbidity and mortality worldwide. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of five Cameroonian edible plants namely Colocasia esculenta, Triumfetta pentandra, Hibiscus esculentus, Canarium schweinfurthii and Annona muricata against a panel of 19 multidrug resistant Gram-negative bacterial strains. The liquid broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols, triterpenes and steroids, other classes of chemicals being selectively distributed. Canarium schweinfurthii extract showed the best activity with MIC values ranging from 64 to 1024 μg/mL against 89.5% of the 19 tested bacteria strains. MIC values below or equal to 1024 μg/mL were also recorded with Triumfetta pentandra, Annona muricata, Colocasia esculenta and Hibiscus esculentus extracts respectively against 15/19 (78.9%), 11/19 (57.9%), 10/19 (52.6%) and 10/19 (52.6%) tested bacteria. Extract from C. schweinfurthii displayed the lowest MIC value (64 μg/mL) against Escherichia coli AG100ATet. Finally, the results of this work provide baseline information for the use of C. esculenta, T. pentandra, H. esculentus, C. schweinfurthii and A. muricata in the treatment of bacterial infections including multidrug resistant phenotypes.  相似文献   

13.
In the present scenario, pharmaceutical and biomedical sectors are facing the challenges of continuous increase in the multidrug-resistant (MDR) human pathogenic microbes. Re-emergence of MDR microbes is facilitated by drug and/or antibiotic resistance, which is acquired way of microbes for their survival and multiplication in uncomfortable environments. MDR bacterial infections lead to significant increase in mortality, morbidity and cost of prolonged treatments. Therefore, development, modification or searching the antimicrobial compounds having bactericidal potential against MDR bacteria is a priority area of research. Silver in the form of various compounds and bhasmas have been used in Ayurveda to treat several bacterial infections since time immemorial. As several pathogenic bacteria are developing antibiotic resistance, silver nanoparticles are the new hope to treat them. This review discusses the bactericidal potential of silver nanoparticles against the MDR bacteria. This multiactional nanoweapon can be used for the treatment and prevention of drug-resistant microbes.  相似文献   

14.
Nanoparticle–albumin complexes are being designed for targeted drug delivery and imaging. However, the changes in the functional properties of albumin due to adsorption on nanoparticles remain elusive. Thus, the objective of this work was to elucidate the structural and functional properties of human and bovine serum albumin bound to negatively charged gold nanoparticles (GNPs). Fluorescence data demonstrated static quenching of albumin by GNP with the quenching of buried as well as surface tryptophan in BSA. The binding process was enthalpy and entropy-driven in HSA and BSA, respectively. At lower concentrations of GNP there was a higher affinity for tryptophan, whereas at higher concentrations both tryptophan and tyrosine participated in the interaction. Synchronous fluorescence spectra revealed that the microenvironment of tryptophan in HSA turned more hydrophilic upon exposure to GNP. The α-helical content of albumin was unaltered by GNP. Approximately 37 and 23% reduction in specific activity of HSA and BSA was observed due to GNP binding. In presence of warfarin and ibuprofen the binding constants of albumin–GNP complexes were altered. A very interesting observation not reported so far is the retained antioxidant activity of albumin in presence of GNP i.e. we believe that GNPs did not bind to the free sulfhydryl groups of albumin. However enhanced levels of copper binding were observed. We have also highlighted the differential response in albumin due to gold and silver nanoparticles which could be attributed to differences in the charge of the nanoparticle.  相似文献   

15.
In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia, Alchornea laxiflora, Boerhavia diffusa, Combretum hispidum, Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289.Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.  相似文献   

16.
17.
Abstract

Deep-sea microorganisms are a new source of bioactive compounds. In this study, crude ethyl acetate extracts of 176 strains of deep-sea bacteria, isolated from sediments of the West Pacific Ocean, were screened for their antibacterial activity against four test bacterial strains isolated from marine biofilms. Of these, 28 deep-sea bacterial strains exhibited antibacterial activity against one or more of the bacteria tested. Active deep-sea bacterial strains belonged mainly to the genera of Pseudomonas, Psychrobacter and Halomonas. Additionally, antilarval activity of 56 deep-sea bacterial strains was screened using Balanus amphitrite larvae. Seven bacterial strains produced metabolites that had strong inhibitive effects on larval settlement. None of these metabolites showed significant toxicity. The crude extract of one deep-sea Streptomyces strain could completely inhibit larval settlement at a concentration of 25 μg ml?1.  相似文献   

18.
With the aim of exploring the potential application of a novel chitosan oligosaccharide derivative (COS-All-Tio) in shrimp preservation, six dominant spoilage bacteria in the spoiled shrimp (Penaeus vannamei) were isolated and identified as Shewanella putrefaciens (RMS1), S. putrefaciens (S2), Pseudomonas weihenstephanensis (P1), P. gessardii (P2), Aeromonas bestiarum (A1) and Aeromonas molluscorum (A2). The antibacterial effect of COS-All-Tio against the six bacterial isolates were studied. Bacterial inhibition zone determination, and minimum inhibitory concentration and minimum bactericidal concentration assays indicated that the antibacterial activity of COS-All-Tio was greatly improved when compared to that of chitosan oligosaccharide (COS). The antibacterial mechanism investigation against S. putrefaciens (RMS1) revealed that COS-All-Tio could inhibit bacterial growth by influencing of membrane integrity. Such disturbance of membrane structure resulted in the leakage of intracellular substance of the bacteria. A strong synergistic antibacterial effect against S. putrefaciens (RMS1) was observed when COS-All-Tio was used in combination with food preservatives (e.g. ε-polylysine hydrochloride). Therefore, COS-All-Tio might have potential in shrimp preservation.  相似文献   

19.
Exposure of skin to various chemical and physical agents results in excessive stress to the outermost cell layer of the skin, causing different degenerative effects that can be minimized by using antioxidant formulations. The major challenge, in this regard, is to develop a formulation, which can prevent photodegradation of the actives, thus allowing a significant amount to be deposited at the site. In recent decades, liposomal formulations have been extensively employed to overcome the barrier properties of the skin and photodegradation of actives. In the present study, chitosan-reduced gold nanoparticles were investigated for its potential as a carrier to prepare liposomes by a spray-drying method. Liposomes so obtained were characterized for phospholipid recovery, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, particle size, zeta potential, encapsulation efficiency, and deposition of drug and gold nanoparticles in the rat skin. Further, a liposomal gel formulation was prepared using Carbopol® 980 NF (Noveon Systems, Kochi, India) and evaluated for drug deposition in the skin. Antioxidant activity of vitamin C encapsulated in gold liposomes was determined on a human leukemia (HL-60) cell line. The use of gold nanoparticles as a carrier showed improved phospholipid recovery and thus overcomes the liposome scalability problem. DRIFT spectra confirmed the presence of phospholipid in the formulation. Liposomal gel showed improved drug deposition, as compared to control and marketed preparations. A more interesting contribution of the chitosan-reduced gold nanoparticles was an enhanced antioxidant activity seen in case of the vitamin C–loaded gold liposomal formulation. Liposomal formulation was found to be stable for 3 months at 30°C and 65% relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号