首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo‐nitrogenase, the V‐nitrogenase and the Fe‐only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal‐replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo‐nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N2 fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal‐limited soil environments.  相似文献   

2.
The export of bacterial toxins across the bacterial envelope requires the assembly of complex, membrane‐embedded protein architectures. Pseudomonas aeruginosa employs type III secretion (T3S) injectisome to translocate exotoxins directly into the cytoplasm of a target eukaryotic cell. This multi‐protein channel crosses two bacterial membranes and extends further as a needle through which the proteins travel. We show in this work that PscI, proposed to form the T3S system (T3SS) inner rod, possesses intrinsic properties to polymerize into flexible and regularly twisted fibrils and activates IL‐1β production in mouse bone marrow macrophages in vitro. We also found that point mutations within C‐terminal amphipathic helix of PscI alter needle assembly in vitro and T3SS function in cell infection assays, suggesting that this region is essential for an efficient needle assembly. The overexpression of PscF partially compensates for the absence of the inner rod in PscI‐deficient mutant by forming a secretion‐proficient injectisome. All together, we propose that the polymerized PscI in P. aeruginosa optimizes the injectisome function by anchoring the needle within the envelope‐embedded complex of the T3S secretome and – contrary to its counterpart in Salmonella – is not involved in substrate switching.  相似文献   

3.
4.
The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.  相似文献   

5.
Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti‐diabetes drug, metformin, reduces glucose‐induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose‐induced P. aeruginosa infections across airway epithelial (Calu‐3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre‐treatment of the epithelium inhibited the glucose‐induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5‐aminoimidazole‐4‐carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa‐induced reduction in the abundance of tight junction proteins, claudin‐1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia‐induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin‐1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia‐induced respiratory infections, avoiding the use of antibiotics.  相似文献   

6.
1. To reveal the role of aquatic heterotrophic bacteria in the process of development of Microcystis blooms in natural waters, we cocultured unicellular Microcystis aeruginosa with a natural Microcystis‐associated heterotrophic bacterial community. 2. Unicellular M. aeruginosa at different initial cell densities aggregated into colonies in the presence of heterotrophic bacteria, while axenic Microcystis continued to grow as single cells. The specific growth rate, the chl a content, the maximum electron transport rate (ETRmax) and the synthesis and secretion of extracellular polysaccharide (EPS) were higher in non‐axenic M. aeruginosa than in axenic M. aeruginosa after cell aggregation, whereas axenic and non‐axenic M. aeruginosa displayed the same physiological characteristic before aggregation. 3. Heterotrophic bacterial community composition was analysed by PCR–denaturing gradient gel electrophoresis (PCR–DGGE) fingerprinting. The biomass of heterotrophic bacteria strongly increased in the coinoculated cultures, but the DGGE banding patterns in coinoculated cultures were distinctly dissimilar to those in control cultures with only heterotrophic bacteria. Sequencing of DGGE bands suggested that Porphyrobacter, Flavobacteriaceae and one uncultured bacterium could be specialist bacteria responsible for the aggregation of M. aeruginosa. 4. The production of EPS in non‐axenic M. aeruginosa created microenvironments that probably served to link both cyanobacterial cells and their associated bacterial cells into mutually beneficial colonies. Microcystis colony formation facilitates the maintenance of high biomass for a long time, and the growth of heterotrophic bacteria was enhanced by EPS secretion from M. aeruginosa. 5. The results from our study suggest that natural heterotrophic bacterial communities have a role in the development of Microcystis blooms in natural waters. The mechanisms behind the changes of the bacterial community and interaction between cyanobacteria and heterotrophic bacteria need further investigations.  相似文献   

7.
8.
9.
Tissue damage predisposes humans to life‐threatening disseminating infection by the opportunistic pathogen Pseudomonas aeruginosa. Bacterial adherence to host tissue is a critical first step in this infection process. It is well established that P. aeruginosa attachment to host cells involves type IV pili (TFP), which are retractile surface fibres. The molecular details of attachment and the identity of the bacterial adhesin and host receptor remain controversial. Using a mucosal epithelium model system derived from primary human tissue, we show that the pilus‐associated protein PilY1 is required for bacterial adherence. We establish that P. aeruginosa preferentially binds to exposed basolateral host cell surfaces, providing a mechanistic explanation for opportunistic infection of damaged tissue. Further, we demonstrate that invasion and fulminant infection of intact host tissue requires the coordinated and mutually dependent action of multiple bacterial factors, including pilus fibre retraction and the host cell intoxication system, termed type III secretion. Our findings offer new and important insights into the complex interactions between a pathogen and its human host and provide compelling evidence that PilY1 serves as the principal P. aeruginosa adhesin for human tissue and that it specifically recognizes a host receptor localized or enriched on basolateral epithelial cell surfaces.  相似文献   

10.
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope‐spanning translocation channel, and those functioning in Gram‐negative species additionally elaborate an extracellular pilus to initiate donor‐recipient cell contacts. We report that pKM101, a self‐transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101‐encoded proteins, the pilus‐tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface‐displayed TraC and Pep are required for an efficient conjugative transfer, ‘extracellular complementation’ potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β‐barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS‐encoded, pilus‐independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.  相似文献   

11.
Pathogenic mycobacteria require type VII secretion (T7S) systems to transport virulence factors across their complex cell envelope. These bacteria have up to five of these systems, termed ESX‐1 to ESX‐5. Here, we show that ESX‐5 of Mycobacterium tuberculosis mediates the secretion of EsxN, PPE and PE_PGRS proteins, indicating that ESX‐5 is a major secretion pathway in this important pathogen. Using the ESX‐5 system of Mycobacterium marinum and Mycobacterium bovis BCG as a model, we have purified and analysed the T7S membrane complex under native conditions. blue native‐PAGE and immunoprecipitation experiments showed that the ESX‐5 membrane complex of both species has a size of ~ 1500 kDa and is composed of four conserved membrane proteins, i.e. EccB5, EccC5, EccD5 and EccE5. Subsequent limited proteolysis suggests that EccC5 and EccE5 mostly reside on the periphery of the complex. We also observed that EccC5 and EccD5 expression is essential for the formation of a stable membrane complex. These are the first data on a T7S membrane complex and, given the high conservation of its components, our data can likely be generalized to most mycobacterial T7S systems.  相似文献   

12.
During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase‐1, which in turn triggers macrophage pyroptosis and IL‐1β/IL‐18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore‐forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase‐11 activation. Surprisingly, previous studies indicated that a T3SS‐induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS‐negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore‐forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll‐like receptors, and thus enhanced the expression of inflammatory proteins including pro‐IL‐1β and TNF‐α. However, mature‐IL‐1β and IL‐18 were undetectable in wild‐type mice, suggesting that ExlA failed to effectively activate caspase‐1. Nevertheless, caspase‐1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA‐induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome‐dependent process.  相似文献   

13.
14.
Type II secretion system (T2SS) is a multiprotein trans‐envelope complex that translocates fully folded proteins through the outer membrane of Gram‐negative bacteria. Although T2SS is extensively studied in several bacteria pathogenic for humans, animals and plants, the molecular basis for exoprotein recruitment by this secretion machine as well as the underlying targeting motifs remain unknown. To address this question, we used bacterial two‐hybrid, surface plasmon resonance, in vivo site‐specific photo‐cross‐linking approaches and functional analyses. We showed that the fibronectin‐like Fn3 domain of exoprotein PelI from Dickeya dadantii interacts with four periplasmic domains of the T2SS components GspD and GspC. The interaction between exoprotein and the GspC PDZ domain is positively modulated by the GspD N1 domain, suggesting that exoprotein secretion is driven by a succession of synergistic interactions. We found that an exposed 9‐residue‐long loop region of PelI interacts with the GspC PDZ domain. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches reveal the occurrence of equivalent secretion motifs in other exoproteins, suggesting a plausible general mechanism of exoprotein recruitment by the T2SS.  相似文献   

15.
A broad range of extracellular proteins secreted by Pseudomonas aeruginosa use the type II or general secretory pathway (GSP) to reach the medium. This pathway requires the expression of at least 12 xcp gene products. XcpR, a putative nucleotide-binding protein, is essential for the secretion process across the outer membrane even though the protein contains no hydrophobic sequence that could target or anchor it to the bacterial envelope. For a better understanding of the relationship between XcpR and the other Xcp proteins which are located in the envelope, we have studied its subcellular localization. In a wild-type P. aeruginosa strain, XcpR was found associated with the cytoplasmic membrane. This association depends on the presence of the XcpY protein, which also appears to be necessary for XcpR stability. Functional complementation of an xcpY mutant required the XcpY protein to be expressed at a low level. Higher expression precluded the complementing activity of XcpY, although membrane association of XcpR was restored. This behavior suggested that an excess of free XcpY might interfere with the secretion by formation of inactive XcpR-XcpY complexes which cannot properly interact with their natural partners in the secretion machinery. These data show that a precise stoichiometric ratio between several components may be crucial for the functioning of the GSP.  相似文献   

16.
Genomic analysis of secretion systems   总被引:6,自引:0,他引:6  
Secretion of proteins into the extracellular environment is important to almost all bacteria, and in particular mediates interactions between pathogenic or symbiotic bacteria with their eukaryotic hosts. The accumulation of bacterial genome sequence data in the past few years has provided great insights into the distribution and function of these secretion systems. Three systems are responsible for secretion of proteins across the bacterial cytoplasmic membrane: Sec, SRP and Tat. Many novel examples of systems for transport across the Gram-negative bacterial cell envelope have been discovered through genome sequencing and surveys, including many novel type III secretion systems and autotransporters. Similarly, genomic data mining has revealed many new potential secretion substrates and identified unsuspected domains in secretion-associated proteins. Interestingly, genomic analyses have also hinted at the existence of a dedicated protein secretion system in Gram-positive bacteria, targeting members of the WXG100/ESAT-6 family of proteins, and have revealed an unexpectedly wide distribution of sortase-driven protein-targeting systems.  相似文献   

17.
作为一种对抗真核细胞和原核细胞的强有力细菌武器,Ⅵ型分泌系统(type Ⅵ secretion system,T6SS)广泛存在于革兰氏阴性菌中。铜绿假单胞菌是一种对多种抗生素具有耐药性并能够在人体引发急性和慢性感染的条件致病菌,它编码3套独立的T6SS,分别为H1-、H2-和H3-T6SS。T6SS通过介导细菌间竞争、生物被膜的形成、金属离子的摄取以及与真核宿主细胞之间的相互作用,对铜绿假单胞菌在毒力和适应环境方面发挥重要作用。本文主要对铜绿假单胞菌T6SS的组装、效应蛋白的分泌、功能及调控机制展开综述,旨在为T6SS的研究提供一定的参考,并为铜绿假单胞菌感染的预防和治疗提供一定的指导。  相似文献   

18.
19.
A single general import pathway in vascular plants mediates the transport of precursor proteins across the two membranes of the chloroplast envelope, and at least four pathways are responsible for thylakoid protein targeting. While the transport systems in the thylakoid are related to bacterial secretion systems, the envelope machinery is thought to have arisen with the endosymbiotic event and to be derived, at least in part, from proteins present in the original endosymbiont. Recently the moss Physcomitrella patens has gained worldwide attention for its ability to undergo homologous recombination in the nuclear genome at rates unseen in any other land plants. Because of this, we were interested to know whether it would be a useful model system for studying chloroplast protein transport. We searched the large database of P. patens expressed sequence tags for chloroplast transport components and found many putative homologues. We obtained full-length sequences for homologues of three Toc components from moss. To our knowledge, this is the first sequence information for these proteins from non-vascular plants. In addition to identifying components of the transport machinery from moss, we isolated plastids and tested their activity in protein import assays. Our data indicate that moss and pea (Pisum sativum) plastid transport systems are functionally similar. These findings identify P. patens as a potentially useful tool for combining genetic and biochemical approaches for the study of chloroplast protein targeting. Abbreviations: EST, expressed sequence tag; LHCP, light-harvesting chlorophyll-binding protein; NIBB, National Institute for Basic Biology; OE17, 17 kDa subunit of the oxygen-evolving complex; PC, plastocyanin; PEP, Physcomitrella EST Programme; SPP, stromal processing peptidase; SRP, signal recognition particle; Tat, twin-arginine translocation; Tic, translocon at the inner membrane of the chloroplast envelope; Toc, translocon at the outer membrane of the chloroplast envelope; TPP, thylakoid processing peptidase; TPR, tetratricopeptide repeatSupplementary material to this paper is available in electronic form at .This revised version was opublished online in July 2005 with corrected page numbers.  相似文献   

20.
Escherichia coli require nickel for the synthesis of [NiFe] hydrogenases under anaerobic growth conditions. Nickel import depends on the specific ABC-transporter NikABCDE encoded by the nik operon, which deletion causes the complete abolition of hydrogenase activity. We have previously postulated that the periplasmic binding protein NikA binds a natural metallophore containing three carboxylate functions that coordinate a Ni(II) ion, the fourth ligand being His416, the only direct metal-protein contact, completing a square-planar coordination for the metal. The crystal structure of the H416I mutant showed no electron density corresponding to a metal-chelator complex. In vivo experiments indicate that the mutation causes a significant decrease in nickel uptake and hydrogenase activity. These results confirm the essential role of His416 in nickel transport by NikA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号