首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了探究喜马拉雅紫茉莉(Mirabilis himalaica)根部水浸提液的化感作用,以小麦和绿豆作为供试材料进行了研究,结果表明这两种植物在经过喜马拉雅紫茉莉根部的水浸提液处理8 d后,细胞和组织形态结构受到了明显的化感抑制作用影响。利用透射电子显微镜和扫描电子显微镜分别观察和分析两种作物在水浸提液处理后的根系形态和细胞结构,结果发现小麦和绿豆的根尖结构已不完整,部分表皮细胞脱落,细胞间的空隙加大,组织间出现了断层和空腔,细胞间紧密排列的结构也被打乱,有内含物渗出;细胞膜萎缩,逐渐发生了质壁分离,细胞质中液泡变大,细胞核出现了消融现象,一些主要的细胞器如内质网、线粒体、高尔基体等结构遭受了破坏或解体,数量减少,植物生命活动受到了严重的抑制。以上结果反映了喜马拉雅紫茉莉根部的水浸提液对两种常见作物都具有较强的化感抑制作用。  相似文献   

2.
除一些植物的毡绒层细胞中有时有2—4核外,每个植物体细胞一般都只有一个核。我们在棉花根尖细胞的观察中,发现了根尖具有二核或三核的细胞(图1—3)。所用材料为“辽棉六号”,待胚根长到1.5—2.5cm 时,切取根尖于卡诺液中固定22小时,铁矾苏木精整体染色后的根尖纵切成厚约0.3mm 的切片,于4%纤维素酶 4%果胶酶的水  相似文献   

3.
植物活细胞可发生质壁分离及质壁分离复原现象,细胞质也处于不断流动的状态(胞质环流)。选用黑藻作为材料,在观察胞质环流现象的同时,观察细胞质壁分离;质壁分离复原实验选用活细胞染色剂中性红(0.1%水溶液)作为指示剂,观察中性红进入细胞的同时,观察复原现象。改进后的实验中可明显观察到中性红进入细胞,从而更好地展示只有"活细胞"才能控制"物质进出"的特点。  相似文献   

4.
植物细胞彩色质壁分离装片的制作左新潮(河南省濮阳县职业技术学校457002)在中学生物实验中,研究植物细胞水份代谢的原理时,有以洋葱表皮细胞为材料制作细胞质壁分离装片观察质壁分离现象的实验。方法是用载玻片、盖玻片、紫色洋葱表皮、蔗糖水溶液制作水装片,...  相似文献   

5.
孔爱华  符凯 《生物学通报》2011,46(11):48-50
对教材进行了二次开发,将“植物细胞的无氧呼吸过程”等知识目标和“观察根尖分生组织细胞的有丝分裂”实验中细胞计数、表格设计等能力目标进行整合,引导学生应用“植物细胞的吸水和失水”实验中获得的“利用质壁分离鉴定细胞的死活”的技能来探究酒精浓度对植物细胞毒害作用影响的一般规律。  相似文献   

6.
整体组织透明和组织切片技术是研究植物组织和器官的结构及其发育过程的常用实验手段。该文针对本科生植物学课程的侧根、胚珠(特别是胚囊)以及胚胎发育内容设计了相应的实验教学课程。该实验以拟南芥幼苗、不同发育时期的花蕾和种子为材料,经固定、脱色和组织透明,利用正置显微镜观察侧根、胚珠以及胚胎的发育过程。根组织经透明后,在显微镜下可以清晰地观察到从侧根原基的建成到侧根发生的八个发育阶段。各个发育时期的胚珠经组织透明后,在显微镜下可以清晰地观察到大孢子母细胞、功能性大孢子(FG1期)以及FG2~FG7期的胚囊。各个发育时期的种子经透明后,在显微镜下可以清晰地观察到胚胎发育的1细胞期、8细胞期、球形期、心形期、鱼雷期、拐杖期和成熟期。这些实验结果可以使学生对拟南芥等双子叶植物的侧根、胚珠以及胚胎发育过程有较为系统的了解。该实验方法在其他较小的双子叶植物中也适用。  相似文献   

7.
以小麦(Triticum aestivum)花粉植株的叶片为材料, 利用整体透明技术制备小麦叶片气孔保卫细胞的观察样品, 比较了4种透明剂的样品制备效果。结果表明, 利用整体透明技术制备小麦叶片气孔保卫细胞观察样品, 无需经过叶片撕取和刮制步骤, 样品制备方法简便且高效; 用甘油溶液、饱和水合三氯乙醛及水合三氯乙醛与甘油的混合液3种透明剂处理小麦叶片后, 在普通显微镜下均可观察到清晰的气孔保卫细胞。  相似文献   

8.
传统的压力-容积(pressure-volume,PV)技术是通过测定植物组织细胞从吸水饱和状态直至膨压消失的失水全过程中水势与相对含水率,并建立两者之间的关系,从而获得其他方法难以获取的植物水分生理参数(如:质壁分离渗透势、饱和渗透势、质壁分离相对含水量、细胞弹性模量)。这些参数与植物耐旱性密切关联,反映植物组织在干旱期维持功能的能力,因而使该技术在揭示树木因水力衰竭而死亡的生理机制中发挥重要作用。然而,该技术在试验材料预处理、测定、计算方法等关键步骤上尚存在问题。为此,本文针对这些潜在问题,结合中国应用研究现状,对PV技术进行综述,并提出相应的建议。  相似文献   

9.
为了阐明Cu2O纳米颗粒(NPs)暴露对植物根系的毒性效应,本研究以小麦品种‘周麦18’为材料,采用水培试验方法,研究了10、50、100和200 mg·L-1浓度的Cu2O-NPs对小麦幼苗生长、根系活性、形态结构及细胞遗传学毒性的影响。结果表明: 不同浓度的Cu2O-NPs降低了小麦幼苗的根芽长度、鲜重、根活性和根冠比,增加了初生根的数量;随着Cu2O-NPs浓度的升高,幼苗根伸长区缩短、根系变硬变脆、根径增加、根冠变大;100 mg·L-1浓度的Cu2O-NPs处理下,小麦根尖有丝分裂指数显著降低,根尖细胞形状不规则化、质壁分离、细胞出现空泡化、细胞核核膜模糊、核内染色体异常。在水培条件下,Cu2O-NPs对小麦幼苗具有一定的遗传学毒性效应,从而影响小麦幼苗的生长发育和根系形态结构。  相似文献   

10.
植物组织培养中的试管植物,其形态比自然形态要小得多,脱离试管后能恢复原形态大小,这种微型化和微型化解除是植物与环境相互作用的一个新命题.以试管马铃薯无性系微型薯为材料,在试管和花盆两种环境下发芽并长成植株,显微切片方法观察其组织结构特征,聚丙烯酰胺凝胶电泳(SDS-PAGE)方法分离不同处理植株的差异蛋白.研究发现,试管植株器官微型化的主要原因是细胞数量减少,其次是细胞体积减小,但试管植株的气孔则较大.在不同处理的植株中检测出单个和多个蛋白差异.结果说明,试管因子,包括营养和生长空间因子,能显著胁迫植物正常生长和形态建成,形态改变过程伴随有较大的生理变化.  相似文献   

11.
胡杨细胞和组织结构与其耐盐性关系的研究   总被引:6,自引:0,他引:6  
The characteristics of the cell and organ structures of Populus euphratica Oliv. in relation to salt and osmotic tolerance were compared with those of P. tomentosa Cart. in vitro under the electron and light microscopic observation. P. euphratica exhibited characteristic structure which was associated with salt stress. It had well-developed epidermis and exodermis in the root tip and poorly developed conducting tissue in leaf. Root hairs were formed closer to the root tips. AsP. euphratica were stressed with salt and PEG, more abundance of chondriosomes and plastids in the cytoplasm and more containing substance in the plastid were observed and the osmophilic substance was obviously displayed in the cytoplasm and in the posterior margin of the vacuole. The filamentous structure, bigger nucleus and nucleolus were visualized in the stressed suspension-cultured cells of P. euphratica. The meristemic cells in the root tip of P. euphratica could maintain their structure when the plant was subjected to 8 g/L NaCl stress. It was also demonstrated that the cell wall and plasmalemma of P. euphratica were tightly combined as a dentate form, explaining why the cell could endure severe salt or osmotic stress and resist to plasmolysis indicating that P. euphratica possesses a solid structure base as a defense to salt stress.  相似文献   

12.
胡杨细胞和组织结构与其耐盐性关系的研究   总被引:18,自引:1,他引:17  
利用电子显微镜和光学显微镜中相差和微分干涉等技术对胡杨(PopuluseuphraticaOliv.)悬浮培养的细胞和试管苗的组织和细胞结构以及盐胁迫对其结构影响进行了研究。与毛白杨(P.tomentosaCar.)相比,胡杨存在与耐盐相关的结构,如根尖具有较发达的表皮和外皮层,根毛着生靠近根端;叶片输导组织不发达;细胞中线粒体和质体较丰富。盐胁迫和渗透胁迫可使胡杨细胞质中的线粒体和质体变得更为丰富,质体中内含体增多,在细胞质中和液泡内缘出现明显的嗜锇物质,在悬浮培养的细胞内表现出明显的丝状结构,细胞核变大,核仁明显。受到8g/LNaCl胁迫的胡杨根尖分生细胞仍可维持正常的结构。在超微结构研究中还发现,胡杨细胞膜与细胞壁之间呈齿状结合,说明了膜与壁之间结合的牢固性和稳定性,解释了胡杨细胞在胁迫中不易发生质壁分离的原因。  相似文献   

13.
Cells and protoplasts isolated from three different tissues of sunflower hypocotyls and cultured either in liquid or agarose medium were compared in terms of their volume, DNA content, division potential and embryoid formation. Epidermal and external cortical cells differ from other tissue cells by their small size, their weak response to plasmolysis and their low DNA content (around 1C). They contribute only very weakly to the dividing protoplast population. In contrast, protoplasts from cortical and medullar cells both have similar division potential, reaching 50%. The nuclear DNA content of these two cell types, as well as their corresponding protoplasts, has a 2C value, taking root tip cells in G0 phase as standard. The culture conditions induce the same specific response in protoplasts isolated from both tissues: exclusively loose colony formation in liquid medium, and mainly production of embryoids in agarose medium.  相似文献   

14.
In this work, we studied the impact of the successive steps of the droplet-vitrification protocol technique employed for cryopreservation of Rubia akane hairy roots on the features of cortical, pericycle and endoderm cells of apical and central root segments, using histology techniques and combining qualitative and quantitative observations. In apical segments, plasmolysis (22–71 %, depending on cell type) was observed only after the loading treatment and did not increase after the following steps of the protocol. By contrast, in central segments, plasmolysis (39–45 %) was already observed after the sucrose pretreatment; it increased to 54–68 %, depending on cell type, after the loading treatment, but no further changes were noted after treatment with the vitrification solution. After liquid nitrogen exposure and unloading treatment, deplasmolysis was more rapid in apical segments, with cortical and pericycle cells having retrieved their original features. In central segments, only cortical cells had retrieved their original features and endoderm and pericycle cells were still highly plasmolysed. Nuclei were more strongly impacted by the cryopreservation protocol in central segments, where they displayed a highly condensed nucleoplasm from the loading treatment onwards and had not retrieved their original aspect after the unloading treatment. By contrast, nuclei had a much less condensed nucleoplasm in cells of apical segments, and they had retrieved their original aspect after the unloading treatment.  相似文献   

15.
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.  相似文献   

16.
悬浮培养中烟草(Nicotiana tabacum)发状根的生长及烟碱合成受到基本培养基浓度、初始pH值、激素种类和浓度等因素的影响。一个5 cm长的根尖, 悬浮在40 mL、pH值为6.0、附加1.0 mg.L-1IAA的1/2 MS液体培养基中, 28 ℃、散光条件下培养30天, 烟碱产量可达0.241 mg.mL-1。  相似文献   

17.
Multiphoton microscopy of intrinsic fluorescence and second harmonic generation (SHG) of whole mouse organs is made possible by optically clearing the organ before imaging.1,2 However, for organs that contain fluorescent proteins such as GFP and YFP, optical clearing protocols that use methanol dehydration and clear using benzyl alcohol:benzyl benzoate (BABB) while unprotected from light3 do not preserve the fluorescent signal. The protocol presented here is a novel way in which to perform whole organ optical clearing on mouse brain while preserving the fluorescence signal of YFP expressed in neurons. Altering the optical clearing protocol such that the organ is dehydrated using an ethanol graded series has been found to reduce the damage to the fluorescent proteins and preserve their fluorescent signal for multiphoton imaging.4 Using an optimized method of optical clearing with ethanol-based dehydration and clearing by BABB while shielded from light, we show high-resolution multiphoton images of yellow fluorescent protein (YFP) expression in the neurons of a mouse brain more than 2 mm beneath the tissue surface.  相似文献   

18.
Lux A  Morita S  Abe J  Ito K 《Annals of botany》2005,96(6):989-996
BACKGROUND AND AIMS: Free-hand sectioning of living plant tissues allows fast microscopic observation of internal structures. The aim of this study was to improve the quality of preparations from roots with suberized cell walls. A whole-mount procedure that enables visualization of exo- and endodermal cells along the root axis was also established. METHODS: Free-hand sections were cleared with lactic acid saturated with chloral hydrate, and observed with or without post-staining in toluidine blue O or aniline blue. Both white light and UV light were used for observation. Lactic acid was also used as a solvent for berberine, and fluorol yellow for clearing and staining the samples used for suberin observation. This procedure was also applied to whole-mount roots with suberized celllayers. KEY RESULTS: Clearing of sections results in good image quality to observe the tissue structure and cell walls compared with non-cleared sections. The use of lactic acid as a solvent for fluorol yellow proved superior to previously used solvents such as polyethylene glycol-glycerol. Clearing and fluorescence staining of thin roots such as those of Arabidopsis thaliana were successful for suberin visualization in endodermal cells within whole-mount roots. For thicker roots, such as those of maize, sorghum or tea, this procedure could be used for visualizing the exodermis in a longitudinal view. Clearing and staining of peeled maize root segments enabled observation of endodermal cell walls. CONCLUSIONS: The clearing procedure using lactic acid improves the quality of images from free-hand sections and clearings. This method enhances the study of plant root anatomy, in particular the histological development and changes of cell walls, when used in combination with fluorescence microscopy.  相似文献   

19.
The reduction in growth of maize (Zea mays L.) seedling primary roots induced by salinization of the nutrient medium with 100 millimolar NaCl was accompanied by reductions in the length of the root tip elongation zone, the length of fully elongated epidermal cells, and the apparent rate of cell production: Each was partially restored when calcium levels in the salinized growth medium were increased from 0.5 to 10.0 millimolar. We investigated the possibility that the inhibition of elongation growth by salinity might be associated with an inhibition of cell wall acidification, such as that which occurs when root growth is inhibited by IAA. A qualitative assay of root surface acidification, using bromocresol purple pH indicator in agar, showed that salinized roots, with and without extra calcium, produced a zone of surface acidification which was similar to that produced by control roots. The zone of acidification began 1 to 2 millimeters behind the tip and coincided with the zone of cell elongation. The remainder of the root alkalinized its surface. Kinetics of surface acidification were assayed quantitatively by placing a flat tipped pH electrode in contact with the elongation zone. The pH at the epidermal surfaces of roots grown either with 100 millimolar NaCl (growth inhibitory), or with 10 millimolar calcium ± NaCl (little growth inhibition), declined from 6.0 to 5.1 over 30 minutes. We conclude that NaCl did not inhibit growth by reducing the capacity of epidermal cells to acidify their walls.  相似文献   

20.
In the light, transfer of lettuce seedlings precultured on liquid medium at pH 6.0 to fresh medium at pH 4.0 induces root hair formation. However, no root hairs form in the dark. Here, we investigated how light induces root hair formation. Randomization of the transverse cortical microtubule (CMT) arrays which occurs in root epidermal cells in the light prior to root hair initiation was not observed in the dark. However, addition of indole-3-acetic acid (IAA) or 1-aminocyclopropane-1-carboxylic acid (ACC) induced CMT randomization and root hair formation. In these cases, CMT randomization occurred in almost the same time-dependent manner as under light. However, root hair initiation was delayed for several hours in the dark. These results suggest that light promotes CMT randomization and root hair initiation via auxin and ethylene signaling but light additionally influences root hair initiation independently of these signaling mechanisms. Furthermore, addition of a microtubule-depolymerizing drug in the dark disrupted the transverse CMT arrays and initiated root hair formation; however, root hair elongation was still suppressed. Root hairs elongated when IAA or ACC was applied with the drug. These results suggest that light also promotes root hair elongation via auxin and ethylene signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号