首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
变应性哮喘是一种以慢性气道炎症和气道高反应性为特征的异质性疾病,与白细胞介素-4(interleukin-4,IL-4)、IL-5和IL-13等II型辅助性T细胞(type 2 T helper cell,Th2)分泌的细胞因子有关。II型固有淋巴细胞(type 2 innate lymphoid cells,ILC2s)是在转录因子维甲酸相关孤核受体α(retinoic acid receptor related orphan receptorα,RORα)和GATA结合因子3(GATA-binding factor 3,GATA3)控制下由骨髓中的淋巴样祖细胞发育而来。ILC2s能分泌Th2型细胞因子如IL-5和IL-13,有助于启动和维持II型免疫反应。近期研究表明,ILC2s在变应性哮喘中发挥着不可替代的作用。研究ILC2s对于了解变应性哮喘的发病机制具有重要意义。该文将主要综述ILC2s的发现、发育、分布与功能及其与变应性哮喘关系的最新进展。  相似文献   

2.
哮喘(asthma)是一种以气道高反应性、慢性气道炎症、气道重塑和可逆性的气流受阻为特征的常见慢性呼吸系统疾病。近年来,研究发现气道上皮细胞在霉菌、尘螨、花粉、病毒感染、空气污染物等各种损伤因素的作用下,可释放细胞因子白细胞介素-33(interleukin-33,IL-33)、白细胞介素-25(interleukin-25,IL-25)和胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP),这些细胞因子不仅可作用于2型辅助性T细胞(type 2 helper T cells,Th2 cells),同时也可作用于固有淋巴样2型细胞(group 2 innate lymphoid cells,ILC2s),通过释放Th2型细胞因子,参与哮喘的发生与发展。尽管这3种细胞因子在哮喘的发生与发展中均起到重要作用,但其在哮喘病理、生理学效应及作用方式上并非完全相同。现就这3种上皮源性细胞因子IL-33、IL-25和TSLP在哮喘发病机制中的作用作一概述。  相似文献   

3.
目的比较过敏原依赖和非依赖性哮喘模型中2型辅助性T细胞(Th2 cell)和固有淋巴样2型细胞(type 2innate lymphoid cell,ILC2)的功能。方法滴鼻法制备过敏原卵清蛋白(ovalbumin,OVA)和上皮源性细胞因子(IL-25、IL-33)诱导的亚急性和慢性哮喘小鼠模型。收集小鼠肺泡灌洗液(bronchoalvelar lavage fluid,BALF)进行细胞计数;取左肺进行石蜡包埋、切片和HE染色;右肺行流式细胞术,以分析在不同时间点各组小鼠Th2细胞和ILC2细胞数目和占肺组织总细胞比例,并对Th2型细胞因子的来源进行分析。结果与生理盐水组相比,各实验组BALF中总细胞数明显增加; HE染色可见OVA、IL-25和IL-33均可诱导哮喘典型病理学改变;各实验组肺组织中Th2细胞与ILC2细胞均明显上升,数量上以Th2细胞为主,两者均可产生Th2型细胞因子IL-5和IL-13,且以Th2细胞为主。而在致哮喘样改变、促进Th2细胞和ILC2细胞在小鼠肺部聚集等方面,以IL-33的效应最强。结论在过敏原OVA和非过敏原IL-25、IL-33诱导的哮喘模型中,Th2型细胞因子主要来源均为Th2细胞,提示Th2细胞在哮喘的发生、发展中起到主要作用。IL-33可能是过敏性和非过敏性哮喘患者个体化治疗的潜在靶点。  相似文献   

4.
摘要 目的:探究糖皮质激素对嗜酸粒细胞哮喘(Eosinophilic asthma, EA) 2 型固有免疫细胞(Type 2 innate lymphoid cells, ILC2s)的影响及相关机制。方法:研究对象来自我院 2021年6月至 2022年6月的EA患者和健康对照(Healthy control, HC),收集相应临床基线资料并评估病情、进行血常规、肺功能等检查;应用流式细胞术检测外周血单个核细胞(Peripheral blood mononuclear cell, PBMC) ILC2s(CD45+Lin-CD127+CD294+);ELISA检测外周血IL-5、IL-13浓度。糖皮质激素治疗EA 患者3月后,观察PBMC中ILC2s及IL-5、IL-13浓度。C57BL/6J小鼠给予鸡卵清蛋白(Ovalbumin,OVA) 20 μg 腹腔注射致敏后用1%OVA雾化吸入激发哮喘EA模型,阴性对照(Negative control, NC)组小鼠用同等体积PBS作为对照。EA造模成功的小鼠通过流式细胞术检测血液及肺泡灌洗液中ILC2s,HE染色检测小鼠肺泡灌洗液中嗜酸性粒细胞(Eosinophil, EOS)及肺部炎症。EA小鼠经糖皮质激素处理后,检测肺部炎症情况;流式细胞术检测PBMC、肺泡灌洗液(Bronchoalveolar lavage fluid, BALF)中 ILC2s;分离肺组织ILC2s,western blot检测相关蛋白表达情况。结果:EA组的ILC2s比例升高, EOS升高,2型细胞因子IL-5、IL-13增加,糖皮质激素治疗1月及3月后ILC2s比例下降,2型细胞因子IL-5、IL-13下降。与NC组小鼠比较,EA组小鼠PBMC及BALF中ILC2s升高,BALF中EOS升高,血清中2型细胞因子IL-5、IL-13升高,肺部炎症加重。糖皮质激素治疗后,肺部炎症减轻,EOS下降,ILC2s减少,2型细胞因子IL-5、IL-13下降,下调JAK/STAT蛋白。结论:在EA中,糖皮质激素通过下调JAK/STAT蛋白抑制ILC2s的功能减轻肺部炎症,为激素治疗嗜酸性粒细胞哮喘的机制提供了新方向。  相似文献   

5.
Th2型细胞因子在支气管哮喘发作过程中的表达   总被引:3,自引:0,他引:3  
支气管哮喘是由多种细胞特别是肥大细胞、嗜酸性粒细胞和T淋巴细胞参与的慢性气道炎症。对支气管哮喘发病机制的认识近年有重大改变 ,Th2型细胞的作用被认为是支气管哮喘发作过程的中心 ,综述了由Th2型细胞产生的细胞因子在支气管哮喘发病过程中的作用及意义。  相似文献   

6.
邓伊  王志强 《生命科学》2013,(11):1089-1093
支气管哮喘(简称哮喘)是一种以Th1/Th2免疫失衡、Th2优势应答为特征的慢性气道炎症性疾病。细胞因子信号转导抑制因子3(SOCS-3)是一类与细胞因子JAK/STAT信号转导途径有关的负反馈调节因子,参与细胞固有免疫、获得性免疫和炎症反应。近年来研究发现,在哮喘的发生发展中SOCS-3均表现出分子水平或功能的异常,提示SOCS.3可作为哮喘诊断和治疗的新靶点。就SOCS-3与哮喘的关系研究进展进行综述,讨论其在哮喘Th1/Th2免疫失衡中的作用。  相似文献   

7.
γδ T细胞是机体重要的固有免疫细胞,参与肺组织炎性病变及哮喘的发生发展。但迄今为止,γδT细胞在呼吸道合胞病毒感染所诱发的气道炎症反应中的作用尚不十分清楚。研究通过建立RSV急性感染的实验动物模型,采用HE染色、Real-timeRT-PCR、流式细胞术等实验方法,旨在揭示γδT细胞在感染性气道炎症发生中的作用及其相关作用机制。结果显示,RSV感染导致BALA/c鼠肺炎性细胞浸润,其中嗜酸性粒细胞增加明显;同时肺组织局部Th2型细胞因子IL-4、IL-13 mRNA表达升高;RSV感染后,肺组织γδT细胞总数,特别是活化的CD69+γδT细胞数量显著增加,其中分泌Th2型细胞因子IL-4和IL-13的γδT细胞数量增加明显,而分泌Th1型细胞因子IFN-γ的γδT细胞数量显著减少,证实γδT细胞通过分泌Th2型细胞因子介导RSV感染诱发的气道炎症反应。  相似文献   

8.
哮喘是一种容易反复发作的气道炎症性疾病,病人会出现气道高反应性(airway hyperresponsiveness,AHR)、黏液分泌增多、气道重塑以及气流受限等临床症状.引发哮喘的因素较多,如遗传因素、环境因素等.按照临床表型,哮喘可分为过敏性哮喘和非过敏性哮喘. T细胞2(T helper 2, Th2)长期以来被认为在过敏性哮喘疾病中发挥关键的调节作用,故过敏性哮喘又称Th2型哮喘.随着非Th2型哮喘以及固有淋巴细胞(innate lymphocytes, ILCs)的发现, ILCs在哮喘疾病中的功能逐渐成为研究的焦点.最近的研究发现, ILCs是Ⅱ型细胞因子IL-5和IL-13的有效来源,并可调节适应性免疫应答,在哮喘疾病中发挥重要作用.本文主要综述ILCs在哮喘疾病中作用的最新研究进展.  相似文献   

9.
支气管哮喘(简称哮喘)的本质是慢性气道炎症,是多种炎症细胞(如嗜酸性粒细胞、肥大细胞、T淋巴细胞、中性粒细胞等)和其介质共同参与引起的慢性炎症反应,而T淋巴细胞在其中发挥重要作用。T淋巴细胞目前主要分为四个亚群,分别是Th1、Th2、Th17和Treg亚群。过去曾认为Th1/Th2平衡失调是哮喘发病的关键因素,但近年研究发现Th17/Treg及Th2/Treg的平衡失调在哮喘的发病机制中同样发挥巨大作用,且日益受到重视。本文就T细胞在哮喘发病机制中的作用及研究进展做一综述。  相似文献   

10.
Ⅲ型固有淋巴细胞(group 3 innate lymphoid cells, ILC3)是近十年才被定义的一群新型免疫细胞,属于固有淋巴细胞家族。ILC3包括多种表型和功能差异的细胞亚群,主要分布于肠道、肺及皮肤等屏障组织,在机体免疫调节、组织修复和淋巴组织形成中起重要作用。然而,在多种炎症性疾病中,ILC3出现数量和功能异常,可通过分泌白介素(interleukin, IL)-17、IL-22、γ-干扰素(interferon γ, IFN-γ)及粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF)等致炎性细胞因子调控其他免疫细胞和诱导异位淋巴结构形成,从而促进疾病的发生和进展。因此,深入探究ILC3的表型及功能对拓展炎症性疾病的认识和寻找新的治疗靶点具有重要意义。本文就ILC3的表型特点、生物学功能及其在炎症性疾病中的研究进展进行综述。  相似文献   

11.
Respiratory syncytial virus (RSV) is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s) specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction); whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.  相似文献   

12.
Group 2 innate lymphoid cells (ILC2) exert critical roles in type 2 immune responses, epithelial repair at mucosal tissues and metabolic homeostasis. ILC2 rapidly provide large amounts of type 2 signature cytokines, thereby driving type 2 immune responses such as the defense against helminths. However, if deregulated, ILC2 facilitate tissue fibrosis and trigger unwanted type 2 immunopathologies such as allergies, asthma and atopic dermatitis. Therefore, ILC2 need to be tightly regulated and we are just beginning to understand which mediators activate or inhibit this rare but important cell population. In this review, we summarize current knowledge about positive and negative regulation of ILC2 and discuss its immunological consequences.  相似文献   

13.
Type 2 innate lymphoid cells (ILC2) in lungs produce interleukin (IL)-5 and IL-13 in response to IL-33 and may contribute to the development of allergic diseases such as asthma. However, little is known about negative regulators and effective inhibitors controlling ILC2 function. Here, we show that soluble ST2, a member of the IL-1 receptor family, suppresses the effect of IL-33 on lung ILC2 in vitro. Stimulation with IL-33 to naïve ILC2 induced morphological change and promoted cell proliferation. In addition, IL-33 upregulated expression of cell surface molecules including IL-33 receptor and induced production of IL-5 and IL-13, but not IL-4. Pretreatment with soluble ST2 suppressed IL-33-mediated responses of ILC2. The results suggest that soluble ST2 acts as a decoy receptor for IL-33 and protects ILC2 from IL-33 stimulation.  相似文献   

14.
Type 2 innate lymphoid cells (ILC2s) have multiple functions that can respond to allergic diseases, parasite infection, metabolic homeostasis, tissue repair, and adipose metabolism homeostasis. In these diseases, ILC2s can be activated by various inflammatory cytokines released by damaged cells. Activated ILC2s produce different type 2 cytokines, including interleukin (IL)-4, IL-5, IL-9, and IL-13, which involved in the pathogenesis of many diseases. In recent years, the relationship between ILC2s and tumor diseases has attracted more and more attention. The role of ILC2s in tumor immunity depends on its surface molecules and cytokine context. This review aims to conclude tumorigenic and antitumorigenic roles of ILC2s, and the characters of ILC2s-related cytokines in tumor diseases to provide a comprehensive overview of the impact of ILC2s in tumor immunity.  相似文献   

15.
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.  相似文献   

16.

Objective

IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s) as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.

Methods and Results

Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apo)E deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC) natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.

Conclusions

The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.  相似文献   

17.
18.
19.
Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine) immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin (IL)-5 is a prototypical type 2 cytokine that is essential for eosinophil maturation and egress out of the bone marrow. However, little is known about the cellular source and underlying cellular and molecular basis for the regulation of IL-5 production during respiratory virus infection. Using a mouse model of influenza virus infection, we found a robust transient release of IL-5 into infected airways along with a significant and progressive accumulation of eosinophils into the lungs, particularly during the recovery phase of infection, i.e. following virus clearance. The cellular source of the IL-5 was group 2 innate lymphoid cells (ILC2) infiltrating the infected lungs. Interestingly, the progressive accumulation of eosinophils following virus clearance is reflected in the rapid expansion of c-kit+ IL-5 producing ILC2. We further demonstrate that the enhanced capacity for IL-5 production by ILC2 during recovery is concomitant with the enhanced expression of the IL-33 receptor subunit, ST2, by ILC2. Lastly, we show that NKT cells, as well as alveolar macrophages (AM), are endogenous sources of IL-33 that enhance IL-5 production from ILC2. Collectively, these results reveal that c-kit+ ILC2 interaction with IL-33 producing NKT and AM leads to abundant production of IL-5 by ILC2 and accounts for the accumulation of eosinophils observed during the recovery phase of influenza infection.  相似文献   

20.
Allergic asthma is a chronic disease characterized by airway obstruction in response to allergen exposure. It results from an inappropriate T helper type 2 response to environmental airborne antigens and affects 300 million individuals. Its prevalence has increased markedly in recent decades, most probably as a result of changes in environmental factors. Exposure to environmental antigens during infancy is crucial to the development of asthma. Epidemiological studies on the relationship between breastfeeding and allergic diseases have reached conflicting results. Here, we have investigated whether the exposure of lactating mice to an airborne allergen affects asthma development in progeny. We found that airborne antigens were efficiently transferred from the mother to the neonate through milk and that tolerance induction did not require the transfer of immunoglobulins. Breastfeeding-induced tolerance relied on the presence of transforming growth factor (TGF)-beta during lactation, was mediated by regulatory CD4+ T lymphocytes and depended on TGF-beta signaling in T cells. In conclusion, breast milk-mediated transfer of an antigen to the neonate resulted in oral tolerance induction leading to antigen-specific protection from allergic airway disease. This study may pave the way for the design of new strategies to prevent the development of allergic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号