首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The control of prolactin secretion by Ca calmodulin and cyclic AMP was studied. Ca++ ionophore A23187 stimulated both cyclic AMP accumulation and prolactin release by primary culture of anterior pituitary cells in vitro. The increase of cyclic AMP formation by A23187 preceded that of prolactin release. To test the calmodulin involvement in these processes we used either selective calmodulin antagonist, the naphthalene sulphonamide derivative W7, or calmodulin containing liposomes. W7 dose dependently inhibited both basal or A23187 stimulated cyclic AMP accumulation and prolactin secretion. Insertion of Ca calmodulin within the cells stimulated prolactin secretion without modifying cyclic AMP accumulation. W7 inhibited the Ca calmodulin containing liposomes stimulation of prolactin release. These results suggest that calmodulin participates to the process of prolactin release.  相似文献   

2.
Human peripheral blood leukocytes (PMN) are induced to release lysosomal enzymes by the calcium ionophore A23187 in the presence but not the absence of extracellular Ca++. Whereas secretion induced by particulate or immune stimuli is accompanied by an increase in visible microtubules and is inhibitable by colchicine, secretion induced by A23187 and Ca++ was not accompanied by an increase in microtubule numbers and was not inhibited by colchicine. Ca++ did not appear to regulate microtubule assembly in these cells since resting PMN had a mean of 22.3 +/- 2.0 microtubules in the centriolar region as compared to 22.3 +/- 1.1 in ionophore-treated cells and 24.9 +/- 1.5 in cells exposed to ionophore and 1 mM Ca++. Bipolar filaments, 10 nm thick and 300--400 nm long, were numerous in the pericortical cytoplasm of cells exposed to both reagents. Microtubules in these cells were decorated with an electron-opaque fibrillar material. PMN exposed to A23187 and Ca++ were contracted in two directions at right angles to each other: (a) Contractions parallel to the plasma membrane resulted in extensive plication of the cell membrane. The cytoplasm subjacent to the plicae contained dense filamentous webs. Plication was prevented by cytochalasin B or reversed by subsequent exposure to an endocytic stimulus such as zymosan. (b) Contractions perpendicular to the plasma membrane, toward the cytocenter, resulted in the formation of vacuoles in normal PMN and of membrane invaginations in cytochalasin B-treated PMN. Whereas contractions parallel to the plasma membrane could occur in the absence of enzyme release (ionophore alone) and enzyme release could occur in the absence of such contractions (ionophore plus calcium plus cytochalasin B), contraction toward the cytocenter occurred in all experimental conditions in which significant enzyme release was obtained. Thus, lysosomal enzyme secretion in PMN involves contractile movements in the plasma membrane toward the lysosomes rather than the reverse. These calcium-mediated contractile events are mediated by cytochalasin B-insensitive microfilaments but not by microtubule assembly.  相似文献   

3.
Catecholamine-stimulated salivary fluid secretion (in vitro) by ixodid ticks is reduced by deletion or lowering the concentration of exogenous bathing medium Ca++. The Ca++ antagonist, verapamil, reversibly inhibits dopamine-stimulated secretion. Ionophore A-23187 is unable to induce glands to secrete. Studies in which labeled and unlabeled Ca++ flux were measured indicate that catecholamines induce release of calcium from intracellular stores during secretion. Cyclic AMP/theophylline-stimulated secretion is inhibited by verapamil, and the exclusion of calcium from the support medium. It is concluded that the primary catecholamine stimulus induces cyclic AMP formation and mobilization of Ca++ (intra- and extracellular). Cyclic AMP and calcium are thought to interact to control secretion within the fluid transporting cells of types II and III alveoli.  相似文献   

4.
Addition of Ca ionophore, A23187, to the solution bathing the mucosal surface of descending rabbit colon resulted in a reversal of active C1absorption to active C1 secretion, a twofold increase in short-circuit current and a 40% increase in tissue conductance without affecting the rate of active Na absorption. These alterations in electrolyte transport are quantitatively similar to those previously observed in response to cyclic 3',5'-AMP (cAMP) (RA. Frizzell, M.J. Koch & S.G. Schulz, J. Membrane Biol. 27:297, 1976). When medium Ca concentration was reduced to 10(-6) M, the secretory response to A23187 was abolished but the response to cAMP was unaffected. The ionophore did not influence the cAMP levels of colonic mucosa. Addition of cyclic AMP to colonic strips preloaded with 45Ca elicited a reversible increase in Ca efflux from the tissue. These results suggest that an increase in intracellular Ca concentration stimulates colonic electrolyte secretion and that the secretory response to cAMP may be due, at least in part, to a release of Ca from intracellular stores.  相似文献   

5.
Local administration of the calcium ionophore, A-23187 increased basal fluid secretion (non-stimulated) from the cannulated main excretory duct of rabbit lacrimal gland in vivo. A-23187 also facilitated fluid secretion induced by submaximal dose of methacholine (0.1 μg/kg, intraarterially). The stimulatory effect of A-23187 was dependent on the extracellular calcium concentration. Lowering the extracellular calcium by addition of EGTA markedly depressed or abolished the responses to the ionophore while increasing the extracellular calcium with CaCl2 enhanced it. The results suggest that A-23187 causes increase in cell membrane permeability to extracellular calcium and the rise in intracellular calcium activates the secretory process(es) by an unknown mechanism to produce fluid secretion in the rabbit lacrimal gland.  相似文献   

6.
Cystic Fibrosis serum or its isolated component IgG fraction and calcium ionophore A23187 all produced a quantitatively greater increase of mucus glycoprotein secretion in the rabbit tracheal epithelium than did control serum or its isolated component IgG fraction. These values were determined by dry weight secretion per gram of tissue and on subsequent sialic acid content of secretions. This demonstrable increase in mucus production represents a measurable difference in the functioning of the cultured mucociliary apparatus due to the influence of cystic fibrosis serum.  相似文献   

7.
Acetylcholine-stimulated fluid secretion from the perfused rabbit mandibular salivary gland was inhibited in a biphasic manner when extracellular calcium concentration was reduced in the range 5 X 10(-4) - 10(-5)M. An initial rapid inhibition was followed by partial recovery to a plateau, the level of which depended upon the calcium concentration. Since no recovery was observed during substitution of calcium by strontium, recovery may depend upon an increased membrane permeability to calcium. It is concluded that acetylcholine evokes fluid secretion in this gland by enhancing calcium entry from the extracellular space, an action which can be mimicked by the calcium ionophore A23187. Changes in the electrolyte composition of saliva during calcium-depletion were such as to suggest that ductal reabsorption of sodium and chloride, and secretion of potassium are inhibited as extracellular calcium concentration is reduced. Secretin-stimulated fluid secretion from the cat pancreas was unaffected when perfusate calcium concentration was reduced to 2.5 X 10(-6)M and carbachol-stimulated amylase secretion was only slightly reduced. Since the latter is a calcium-dependent process, the source of calcium is presumably intracellular. In both glands, reducing calcium to 1 X 10(-6)M caused rapid and irreversible inhibition of fluid secretion.  相似文献   

8.
The possibility of interactions between calcium and cyclic AMP (cAMP) in the mechanism of stimulation of H+ transport by A23187 was studied in the isolated gastric mucosa of the toad Bufo marinus. A23187 stimulated H+ secretion and histamine release. The amount of histamine released by A23187 did not explain the degree of stimulation. Metiamide partially inhibited the response to A23187. Ca++ ionophore produced an overstimulation of secretion after H+ transport had been induced by supramaximal effective concentrations of histamine (10-4 M). In the presence of metiamide, IMX potentiated the response to A23187. Also, in the same condition (metiamide treated) the effects of db-cAMP and A23187 were additive. The results are consistent with an interaction between Ca++ and ionophore-released histamine at the oxyntic cell in the stimulation by A23187. The stimulatory response may be the result of a potentiation between calcium and cAMP at the intracellular level.  相似文献   

9.
The role of Ca2+ in the mediation of pepsinogen secretion from frog esophagus was investigated by means of ionophore A23187 and LaCl3. The esophageal mucosa from Asian bullfrog Rana tigerina was mounted in a double-chamber system to preserve its polarity and was incubated in a medium containing 1.5 mM CaCl2. Pepsinogen secreted was measured and expressed as % of total. The basal secretion averaged 3.5%/h. Bethanechol (25 microM), dibutyryl-cAMP (10 mM), ionophore A23187 (30 microM) and 3-isobutyl-1-methylxanthine (0.1 mM) increased the secretion to 8.7, 7.4, 7.1 and 6.8%, respectively. The stimulatory effect of bethanechol and of dibutyryl-cAMP were not affected by removing the exogenous Ca2+ with EGTA. The basal secretion was, however, reduced by 50% when Ca2+ in the incubation medium was lowered to 20 microM. At this low Ca2+ concentration, ionophore A23187 not only lost its stimulatory effect but also diminished the stimulation caused by bethanechol and dibutyryl-cAMP. While LaCl3 at 1 mM had no effect on basal and bethanechol-stimulated secretion, at 10 mM it abolished the stimulation evoked by bethanechol or dibutyryl-cAMP. The conclusions are: (1) both Ca2+ and cAMP are involved in the mediation of pepsinogen secretion from frog esophagus, (2) basal secretion is dependent on extracellular Ca2+, whereas bethanechol-stimulated secretion is not, (3) in the plasma membranes of peptic cells may exist a distinct Ca2+ pool (La3+-and ionophore A23187-sensitive) which is involved in the stimulated pepsinogen secretion.  相似文献   

10.
1. Amino acid incorporation in intact rabbit reticulocytes was unaffected by depletion of Ca2+ with EGTA. 2. The Ca2+ ionophore A23187 strongly inhibited incorporation in reticulocytes incubated in 1 mM Ca2+ but not in EGTA. Polysomal profiles and average ribosomal transit times of cells treated with Ca2+ ionophore at 1 mM Ca2+ were characteristic of translational elongation block. 3. The behavior of reticulocytes with respect to Ca2+ and A23187 contrasts with that of nucleated cells possessing endoplasmic reticulum in which protein synthesis is inhibited at translational initiation by either Ca2+ depletion or by exposure to Ca2+ ionophore.  相似文献   

11.
Dual effects of manganese on prolactin secretion   总被引:1,自引:0,他引:1  
The effect of Mn2+ (a commonly used Ca2+ antagonist) on prolactin secretion from pituitary cells was investigated. In the presence of normal extracellular Ca2+ levels (2.5mM), Mn2+ inhibited basal, TRH- and K+- stimulated prolactin secretion. The Ca2+ ionophore, A23187, partially overcame the inhibitory effect of Mn2+. However, in the presence of low extracellular Ca2+ (less than 100 microM), which decreased basal prolactin secretion and abolished any stimulatory effects of TRH or K+, a paradoxical stimulatory effect was observed with Mn2+ in the presence of A23187. In the presence of Ca2+, Mn2+ appeared to be inhibitory due to its Ca2+ antagonistic effects, but at low Ca2+ levels, intracellular stimulatory effects of Mn2+ became apparent.  相似文献   

12.
Low concentrations of calcium and magnesium ions have been shown to influence microtubule assembly in vitro. To test whether these cations also have an effect on microtubules in vivo, specimens of Actinosphaerium eichhorni were exposed to different concentrations of Ca++ and Mg++ and the divalent cation ionophore A23187. Experimental degradation and reformation of axopodia were studied by light and electron microscopy. In the presence of Ca++ and the ionophore axopodia gradually shorten, the rate of shortening depending on the concentrations of Ca++ and the ionophore used. Retraction of axopodia was observed with a concentration of Ca++ as low as 0.01 mM. After transfer to a Ca++-free solution containing EGTA, axopodia re-extend; the initial length is reached after about 2 h. Likewise, reformation of axopodia of cold-treated organisms is observed only in solutions of EGTA or Mg++, whereas it is completely inhibited in a Ca++ solution. Electron microscope studies demonstrate degradation of the axonemal microtubular array in organisms treated with Ca++ and A23187. No alteration was observed in organisms treated with Mg++ or EGTA plus ionophore. The results suggest that, in the presence of the ionophore, formation of axonemal microtubules can be regulated by varying the Ca++ concentration in the medium. Since A23187 tends to equilibrate the concentrations of divalent cations between external medium and cell interior, it is likely that microtubule formation invivo is influenced by micromolar concentrations of Ca++. These concentrations are low enough to be of physiological significance for a role in the regulation of microtubule assembly in vivo.  相似文献   

13.
Summary Addition of Ca ionophore, A23187, to the solution bathing the mucosal surface of descending rabbit colon resulted in a reversal of active Cl absorption to active Cl secretion, a twofold increase in short-circuit current and a 40% increase in tissue conductance without affecting the rate of active Na absorption. These alterations in electrolyte transport are quantitatively similar to those previously observed in response to cyclic 3,5-AMP (cAMP) (R.A. Frizzell, M.J. Koch & S.G. Schultz,J. Membrane Biol. 27:297, 1976). When medium Ca concentration was reduced to 10–6 m, the secretory response to A23187 was abolished but the response to cAMP was unaffected. The ionophore did not influence the cAMP levels of colonic mucosa. Addition of cyclic AMP to colonic strips preloaded with45Ca elicited a reversible increase in Ca efflux from the tissue. These results suggest that an increase in intracellular Ca concentration stimulates colonic electrolyte secretion and that the secretory response to cAMP may be due, at least in part, to a release of Ca from intracellular stores.  相似文献   

14.
The ability of C5a to stimulate lysosomal enzyme release and 45Ca2+ efflux from rabbit neutrophils was studied. C5a stimulated beta-glucuronidase release from cytochalasin B-treated neutrophils either in the presence or absence of extracellular calcium. Depletion of cell calcium by pretreatment with the calcium ionophore A23187 blocked both the ability of C5a to elicit enzyme release in the absence of extracellular calcium and its ability to stimulate 45Ca2+ efflux. Both actions were dose-dependent over the same concentration range (10(-8)-10(-6) M ionophore A23187). In contrast, ionophore pretreatment had no effect on C5a-stimulated enzyme release in the presence of extracellular calcium. These results suggest that (a) release of cell calcium is required for enzyme secretion in the absence of extracellular calcium, and (b) C5a can trigger near-maximal enzyme release by using calcium from either of two sources: the extracellular space or an intracellular site.  相似文献   

15.
Beta adrenergic agonists, tetradecanoylphorbol acetate, and the ionophore A23187 all stimulate surfactant secretion in type II cells isolated from rats. We found that combinations of these agonists cause augmented secretion, suggesting that the agonists may effect different steps in the secretory process. Previous studies have shown that cAMP is likely to be an intracellular 'second messenger' in type II cells. A23187, which has been reported to increase cAMP in some cell systems, did not increase the cAMP content of type II cells. We investigated the possible role of Ca2+ as another 'second messenger' by studying cellular 45Ca fluxes and the effect of extracellular calcium depletion on secretion. Depletion of extracellular calcium for as long as 3 h did not alter stimulated secretion, although basal secretion was increased. Secretagogues did not stimulate 45Ca influx from extracellular sources. A23187 and, to a lesser extent, terbutaline caused an acceleration of 45Ca efflux from type II cells. The addition of terbutaline or tetradecanoylphorbol acetate to A23187 further accelerated 45Ca efflux, suggesting that these agonists may act on separate calcium pools or by different mechanisms on the same calcium pool. Although secretion from type II cells is not inhibited by extracellular calcium depletion, the studies on 45Ca efflux suggest that Ca2+ plays a role in the regulation of surfactant secretion from isolated type II cells.  相似文献   

16.
We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.  相似文献   

17.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2353-2365
We have studied the onset of secretory responsiveness to cholecystokinin (CCK) during development of the rat exocrine pancreas. Although acinar cells of the fetal pancreas (1 d before birth) are filled with zymogen granules containing the secretory protein, alpha- amylase, the rate of amylase secretion from pancreatic lobules incubated in vitro was not increased in response to CCK. In contrast, the rate of CCK-stimulated amylase discharge from the neonatal pancreas (1 d after birth) was increased four- to eightfold above that of the fetal gland. The postnatal amplification of secretory responsiveness was not associated with an increase in the number or cell surface expression of 125I-CCK binding sites. When 125I-CCK-33 binding proteins were analyzed by affinity crosslinking, two proteins of Mr 210,000 and 100,000-160,000 were labeled specifically in both fetal and neonatal pancreas. To determine if cell surface receptors for CCK in the fetal pancreas are functional and able to generate a rise in the cytosolic [Ca++], we measured 45Ca++ efflux from tracer-loaded lobules. 45Ca++ efflux from both fetal and neonatal pancreas was comparably increased by CCK, indicating CCK-induced Ca++ mobilization and elevated cytosolic [Ca++]. The Ca++ ionophore A23187 also stimulated the rate of 45Ca++ extrusion from pancreas of both ages. Increased amylase secretion occurred concurrently with A23187-stimulated 45Ca++ efflux in neonatal pancreas, but not in the fetal gland. A23187 in combination with dibutyryl cAMP potentiated amylase release from the neonatal gland, but not from fetal pancreas. Similarly, the protein kinase C activator, phorbol dibutyrate, did not increase the rate of secretion from the fetal gland when added alone or in combination with A23187 or CCK. We suggest that CCK-receptor interaction in the fetal pancreas triggers intracellular Ca++ mobilization. However, one or more signal transduction events distal to Ca++ mobilization have not yet matured. The onset of secretory response to CCK that occurs postnatally may depend on amplification of these transduction events.  相似文献   

19.
The Ca++ requirement for in vitro lymphocyte stimulation by lectins is well known and can be demonstrated by the use of Ca++ chelators. In this study, three Ca++ antagonists were examined for their effects on lymphocyte proliferation. [3H]-thymidine incorporation was employed to measure DNA synthesis in several systems. Stimulation and proliferation were achieved by the addition of one of the following: the mitogenic lectin concanavalin A (ConA); the combination of two co-mitogens, the calcium ionophore A23187 and the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA), neither of which is mitogenic alone; or the non-mitogenic lectin, wheat germ agglutinin (WGA) with TPA. These mitogenic systems were tested for their sensitivity to the Ca++ channel blockers verapamil and nicardipine and the intracellular Ca++ antagonist TMB-8. We found that the ConA and WGA plus TPA treated cells were inhibited approximately 50% by 10 microM verapamil, nicardipine or TMB-8. The stimulation caused by A23187 and TPA was only inhibited by TMB-8 and nicardipine. The inhibitory effects caused by the Ca++ antagonists could not be reversed by the addition of exogenous Ca++ (0.1-1.5 mM), but were reversed by repeated washings in antagonist free media. Using TMB-8 we saw an apparent intracellular Ca++ dependence throughout the G1 phase. Previous studies using Ca++ chelators or Ca++ antagonists suggested an endpoint at about halfway through this period.  相似文献   

20.
We have shown that a Ca++-ionophore activity is present in the (Ca++ +Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A. E. Shamoo & D. H. MacLennan, 1974. Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca++ +Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential -SH groups. However, it appears that there are no essential -SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential -SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号