首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new chromogenic substrate to assay the starch debranching enzymes limit dextrinase and pullulanase is described. The 2-chloro-4-nitrophenyl glycoside of a commercially available branched heptasaccharide (Glc-maltotriosyl-maltotriose) was found to be a suitable specific substrate for starch debranching enzymes and allows convenient assays of enzymatic activities in a format suited for high-throughput analysis. The kinetic parameters of these enzymes toward the synthesized substrate are determined, and the selectivity of the substrate in a complex cereal-based extract is established.  相似文献   

2.
We describe a fluorescence-based assay for the analysis of xylanase activity using a novel fluorogenic substrate, 6,8-difluoro-4-methylumbelliferyl beta-D-xylobioside (DiFMUX(2)). Generation of fluorescent 6,8-difluoro-4-methylumbelliferone (DiFMU) from the substrate corresponded directly to xylanase activity. High-performance liquid chromatography analysis of the digestion products showed that xylanase hydrolyzed DiFMUX(2) directly to DiFMU and xylobiose. The assay provides the speed, sensitivity, and convenience required for measuring xylanase activity or for screening xylanase inhibitors in a high-throughput format and is suitable for the kinetic assay of xylanases from a variety of sources.  相似文献   

3.
A high-throughput screening method based on the competitive binding of a lumazine synthase inhibitor and riboflavin to the active site of Schizosaccharomyces pombe lumazine synthase was developed. This assay is sensitive, simple, and robust. During assay development, all of the known active inhibitors tested were positively identified. Preliminary high-throughput screening in 384-well format resulted in a Z factor of 0.7. The approach utilizes a thermodynamic assay to bypass the problems associated with the instabilities of both lumazine synthase substrates that complicate the use of a kinetic assay in a high-throughput format, and it removes the time element from the assay, thus simplifying the procedure.  相似文献   

4.
5-Lipoxygenase (5-LO) is the key enzyme involved in leukotriene synthesis and its improper regulation is implicated in several inflammatory diseases. A rapid and sensitive assay for 5-LO activity suitable for high-throughput format is not yet available. In this study, we examined whether the ferrous oxidation-xylenol orange (FOX) assay could be applicable for the high-throughput screening of 5-LO inhibitors. Using insect cell lysates overexpressing rat 5-LO, the effects of cofactors of 5-LO such as ATP, Ca2+, and L-alpha-phosphatidylcholine (PC) on the color development of FOX reagents were investigated. ATP quenched substantially color development by hydroperoxide, an intermediate of 5-LO reaction, and an optimum concentration of ATP with little interference was determined as 20 microM. Ethylenediaminetetraacetate (0.4 mM) also affected the complex formation with FOX reagents. On the other hand, neither Ca2+ nor PC influenced complex formation with FOX reagents. Under optimized assay conditions, zileuton, a 5-LO-specific inhibitor, exhibited inhibitory potency (IC50 values of 0.1-0.2 microM) similar to that determined by the conventional spectrophotometric assay. Taken together, this study shows that the FOX assay with some modifications can be employed for high-throughput assay format for the measurement of 5-LO activity at the stage of primary screening.  相似文献   

5.
We describe a novel assay format for the Gal4-based yeast two-hybrid-system, in which the readout from three different reporter genes is measured sequentially in a single microplate. Activation of the URA3, MEL1, and lacZ reporters in response to a protein-protein interaction is monitored by measuring sequentially: (i) growth in medium lacking uracil, (ii) alpha-galactosidase activity, and (iii) beta-galactosidase. The data thus generated permit elimination of many false positive signals and provide a preliminary measurement of reporter activation-strength that may be confirmed by further analysis. The assay procedure is inexpensive and requires few liquid-handling steps. It is appropriate for automated high-throughput interaction mating assays, validation of putative interactor strains and hybrid-protein self-activator tests.  相似文献   

6.
The Pup-proteasome system (PPS) carries out regulated tagging and degradation of proteins in bacterial species belonging to the phyla Actinobacteria and Nitrospira. In the pathogen Mycobacterium tuberculosis, where this proteolytic pathway was initially discovered, PPS enzymes are essential for full virulence and persistence in the mammalian host. As such, PPS enzymes are potential targets for development of antituberculosis therapeutics. Such development often requires sensitive and robust assays for measurements of enzymatic activities and the effect of examined inhibitors. Here, we describe the development of an in vitro activity assay for Dop, the first enzyme in the PPS. Based on fluorescence anisotropy measurements, this assay is simple, sensitive, and compatible with a high-throughput format for screening purposes. We demonstrate how this assay can also be reliably and conveniently used for detailed kinetic measurements of Dop activity. As such, this assay is of value for basic research into Dop and the PPS. Finally, we show that the assay developed here primarily for the mycobacterial Dop can be readily employed with other Dop enzymes, using the same simple protocol.  相似文献   

7.
An RNA editing reaction that is both essential and specific to the trypanosomatid parasites is an attractive target for new drug development. Although high-throughput screening of chemical libraries is a powerful strategy often used to identify new drugs, the available in vitro editing assays do not have the necessary sensitivity and format for this approach to be feasible. A ruthenium labeled reporter RNA is described here that overcomes these limitations as it can both detect edited product in the low femtomole range and is ideal for high-throughput format. The reporter RNA consists of an RNA editing substrate linked to a streptavidin-binding aptamer that is initially held within an inactive conformation. An in vitro selection strategy optimized the linkage so that the streptavidin-binding aptamer is only activated by an editing-induced conformational change. An electrochemiluminescent signal results from the ruthenium label when the reporter is bound to the bottom of a streptavidin-coated microtiter plate where it can be stimulated by a carbon electrode. Chemical probing, mutagenesis, and binding affinity measurements were used to characterize the reporter. The highly sensitive assay could be adapted to a broad range of RNA processing reactions.  相似文献   

8.
Peptidoglycan synthesis begins in the cytoplasm with the condensation of UDP-N-acetyl glucosamine (UDP-GlcNAc) and phosphoenolpyruvate catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase. UDP-GlcNAc is also utilized as substrate for the glycosyltransferase MurG, a membrane-bound enzyme that catalyzes the production of lipid II. Membranes from Escherichia coli cells overproducing MurG support peptidoglycan formation at a rate approximately fivefold faster than membranes containing wild-type levels of MurG. Conditions have been optimized for the production of large amounts of membranes with increased levels of MurG, allowing the development of an assay suitable for high-throughput screening of large compound libraries. The quality of the purified membranes was assessed by electron microscopy and also by testing cross-linked peptidoglycan production. Moreover, kinetic studies allowed the determination of optimal concentrations of the substrates and membranes to be utilized for maximum sensitivity of the assay. Using a 96-well assay format, the IC50 values for vancomycin, tunicamycin, flavomycin, and bacitracin were 1.1 microM, 0.01 microg/ml, 0.03 microg/ml, and 0.7 microg/ml, respectively.  相似文献   

9.
Accompanying the advances in basic biology of G protein-coupled receptors (GPCRs) is the practical need among biopharmaceutical companies for sensitive assays to assess GPCR function, particularly formats that are compatible with high-throughput drug screening. Here we describe a novel cell-based assay format for the high-throughput detection of ligands for Gi protein-coupled receptors. Two Gi-GPCRs, mu-opioid receptor (mu-OPR) and 5-hydroxytryptamine receptor la (5HT1aR) are employed as model receptor targets. The key feature of this assay system is the isolation of stable, clonal Chinese hamster ovary (CHO) cell lines that carry three separate expression plasmids: (1) a chimeric Gq/i5 protein (which re-directs a negative Gi-type signal to a positive Gq-type response), (2) a given Gi-GPCR, and (3) a beta-lactamase (beta1a) reporter gene responsive to Gi-GPCR signaling. Cell-based assays built using this format show appropriate rank order of potency among a reference set of receptor agonist and antagonist compounds. Such assays are also robust, reliable, and can be used for industrial-scale applications such as high-throughput screening for drug leads.  相似文献   

10.
We report a new format for measuring ATP/[(32)P]pyrophosphate exchange in a higher throughput assay of adenylation domains (A-domains) of non-ribosomal peptide synthetases. These enzymes are key specificity determinants in the assembly line biosynthesis of non-ribosomal peptides, an important class of natural products with an activity spectrum ranging from antibiotic to antitumor activities. Our assay in 96-well format allows the rapid measurement of approximately 1000 data points per week as a basis for precise assessment of the kinetics of A-domains. The assay also allows quantitative high-throughput screening of the substrate specificity of A-domains identifying alternative, promiscuous substrates. We show that our assay is able to give high quality data for the T278A mutant of the A-domain of the tyrocidine synthetase module TycA with a 330-fold lower k(cat)/K(M). The large dynamic range of this assay will be useful for the screening of libraries of mutant A-domains. Finally we describe and evaluate a procedure for the high-throughput purification of A-domains in 96-well format for the latter purpose. Our approach will be of utility for mechanistic analysis, substrate profiling and directed evolution of the A-domains, to ultimately enable the combinatorial biosynthesis of non-natural analogues of non-ribosomal peptides that may have potential as alternative drug candidates.  相似文献   

11.
This report describes the development, optimization, and implementation of a cell-based assay for high-throughput screening (HTS) to identify inhibitors to hepatitis C virus (HCV) replication. The assay is based on a HCV subgenomic RNA replicon that expresses beta-lactamase as a reporter for viral replication in enhanced Huh-7 cells. The drug targets in this assay are viral and cellular enzymes required for HCV replication, which are monitored by fluorescence resonance energy transfer using cell-permeable CCF4-AM as a beta-lactamase substrate. Digital image processing was used to visualize cells that harbor viral RNA and to optimize key assay development parameters such as transfection and culturing conditions to obtain a cell line which produced a robust assay window. Formatting the assay for compound screening was problematic due to small signal-to-background ratio and reduced potency to known HCV inhibitors. These technical difficulties were solved by using clavulanic acid, an irreversible inhibitor of beta-lactamase, to eliminate residual beta-lactamase activity after HCV replication was terminated, thus resulting in an improved assay window. HTS was carried out in 384-well microplate format, and the signal-to-background ratio and Z factor for the assay plates during the screen were approximately 13-fold and 0.5, respectively.  相似文献   

12.
Cell-based beta-lactamase reporter gene assays designed to measure the functional responses of G-protein-coupled receptors (GPCRs) were miniaturized to less than 2 microL total assay volume in a 3456-well microplate. Studies were done to evaluate both receptor agonists and antagonists. The pharmacology of agonists and antagonists for target GPCRs originally developed in a 96-well format was recapitulated in a 3456-well microplate format without compromising data quality or EC(50)/IC(50) precision. These assays were employed in high-throughput screening campaigns, allowing the testing of more than 150,000 compounds in 8 h. The instrumentation used and practical aspects of the assay development are discussed.  相似文献   

13.
The metabolite 5-aminolevulinic acid (ALA) is an early committed intermediate in the biosynthetic pathway of heme and chlorophyll formation. In plants, 5-aminolevulinic acid is synthesized via a two-step pathway in which glutamyl-tRNA(Glu) is reduced by glutamyl-tRNA(Glu) reductase (GluTR) to glutamate 1-semialdehyde, followed by transformation to 5-aminolevulinic acid catalyzed by glutamate 1-semialdehyde aminotransferase. Using an Escherichia coli cell-based high-throughput assay to screen small molecule libraries, we identified several chemical classes that specifically inhibit heme/chlorophyll biosynthesis at this point by demonstrating that the observed cell growth inhibition is reversed by supplementing the medium with 5-aminolevulinic acid. These compounds were further tested in vitro for inhibition of the purified enzymes GluTR and glutamate 1-semialdehyde aminotransferase as confirmation of the specificity and site of action. Several promising compounds were identified from the high-throughput screen that inhibit GluTR with an I(0.5) of less than 10 microM. Our results demonstrate the efficacy of cell-based high-throughput screening for identifying inhibitors of 5-aminolevulinic acid biosynthesis, thus representing the first report of exogenous inhibitors of this enzyme.  相似文献   

14.
15.
A simple, continuous spectrophotometric assay for peptidylarginine deiminase (PAD) is described. Deimination of peptidylarginine results in the formation of peptidylcitrulline and ammonia. The ammonia released during peptidylarginine hydrolysis is coupled to the glutamate-dehydrogenase-catalyzed reductive amination of alpha-ketoglutarate to glutamate and reduced nicotinamide adenine dinucleotide (NADH) oxidation. The disappearance of absorbance at 340nm due to NADH oxidation is continuously measured. The specific activity obtained by this new protocol for highly purified human PAD is comparable to that obtained by a commonly used colorimetric procedure, which measures the ureido group of peptidylcitrulline by coupling with diacetyl monoxime. The present continuous spectrophotometric method is highly sensitive and accurate and is thus suitable for enzyme kinetic analysis of PAD. The Ca(2+) concentration for half-maximal activity of PAD obtained by this method is comparable to that previously obtained by the colorimetric procedure.  相似文献   

16.
17.
Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP)-based couple d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z' of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC trade mark and validated with the protein kinase C inhibitor staurosporine. The IC(50) value generated was comparable to the value obtained by the radioactive (33)P-gamma-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.  相似文献   

18.
The ubiquitin-proteasome pathway is the major nonlysosomal proteolytic system in eukaryotic cells responsible for regulating the level of many key regulatory molecules within the cells. Modification of cellular proteins by ubiquitin and ubiquitin-like proteins, such as small ubiquitin-like modifying protein (SUMO), plays an essential role in a number of biological schemes, and ubiquitin pathway enzymes have become important therapeutic targets. Ubiquitination is a dynamic reversible process; a multitude of ubiquitin ligases and deubiquitinases (DUBs) are responsible for the wide-ranging influence of this pathway as well as its selectivity. The DUB enzymes serve to maintain adequate pools of free ubiquitin and regulate the ubiquitination status of cellular proteins. Using SUMO fusions, a novel assay system, based on poliovirus RNA-dependent RNA polymerase activity, is described here. The method simplifies the isopeptidase assay and facilitates high-throughput analysis of these enzymes. The principle of the assay is the dependence of the viral polymerase on a free N terminus for activity; accordingly, the polymerase is inactive when fused at its N terminus to SUMO or any other ubiquitin-like protein. The assay is sensitive, reproducible, and adaptable to a high-throughput format for use in screens for inhibitors/activators of clinically relevant SUMO proteases and deubiquitinases.  相似文献   

19.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and guanosine monophosphate (cGMP) into inactive 5' monophosphates, and exist as 11 families. Inhibitors of PDEs allow the elevation of cAMP and cGMP, which leads to a variety of cellular effects including airway smooth muscle relaxation and inhibition of cellular inflammation or of immune responses. PDE4 inhibitors specifically prevent the hydrolysis of cAMP. We have validated the manually developed reporter gene assay in a high-throughput screening format that allows for fast and cost-effective identification of potential inhibitors of PDE4 isozymes. The assay is sensitive and robust, with a Z' value of >0.5. The assay is also amenable to 384-well format.  相似文献   

20.
A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of l-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pKa to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号