共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Cao Musen Zhou Garrett M. Tow Liangliang Huang Tingting Yang 《Molecular simulation》2017,43(7):502-509
AbstractMolecular simulation methods were applied to study the effect of hydrophilicity on CO2/CH4 separation using carbon nanotube (CNT) membranes. CNTs with a diameter of ~1 nm were functionalised by varying amounts of carbonyl groups, in order to achieve various hydrophilicity. The presence of –CO groups inside the CNT allow a significant gain in the diffusion selectivity of CO2, while in contrast the adsorption selectivity is hardly changed. The corresponding permeation selectivity increases as the hydrophilicity of the CNT-based membrane increases. However, the permeability of CO2 decreases due to a combination of the intermolecular interactions between the gas and functional groups and the steric effects of the added functional groups. Considering both the permeation selectivity and permeability, it was found that the maximum separation performance is achieved in a certain hydrophilic CNT membrane. Moreover, the separation performance of hydrophilic CNTs for CO2/CH4 mixtures breaks the Robeson upper bound. 相似文献
2.
以一年生曼地亚红豆杉(Taxus media cv.hicksii)扦插苗为材料,采用密闭箱静态熏气法,研究不同甲醛(CH2O)浓度(0、5、10、20和40 mg·m-3)和熏气时间(1、3、5、7 d)对曼地亚红豆杉的生理响应。结果显示:(1)在5~20 mg·m-3CH2O浓度下,曼地亚红豆杉叶片均无受害症状,在40 mg·m-3CH2O熏气1 d时,叶片开始出现受害症状,并随时间的延长逐渐加重;(2)随着CH2O浓度的增加和熏气时间的延长,叶片MDA、Pro含量和相对电导率皆呈增加趋势,SS含量表现为先升后降,但仍显著高于对照;(3)在5 mg·m-3CH2O处理下,叶片SOD、CAT、PPO和GR作为第一道防线共同作用以清除过多的活性氧,其中PPO最为敏感;在10、20 mg·m-3CH2O处理下,SOD、POD、CAT、PPO、APX和GR共同作用加快对活性氧的清理;在40 mg·m-3CH2O浓度下,各酶的活性均受到抑制,其中APX、PPO和GR活性显著低于对照,而SOD、POD和CAT活性仍显著高于对照。研究表明,在中低CH2O浓度(5~20 mg·m-3)处理下,曼地亚红豆杉主要通过合成渗透调节物质和活性氧自由基的酶促清除机制共同作用来适应逆境,在40 mg·m-3CH2O浓度下,APX、PPO、GR活性受到显著抑制,细胞膜过氧化程度加剧,植物叶片受到伤害;在CH2O浓度低于20 mg·m-3时,曼地亚红豆杉通过自身的应激保护系统来维持正常的生理活动,表现出较强的CH2O耐受性。 相似文献
3.
Luth Robin P Germain P Lecomte M Landrain B Li Y Cluzeau D 《Bioresource technology》2011,102(4):3679-3686
Treatment of liquid manure can result in the production of ammonia, nitrous oxide and methane. Earthworms mix and transform nitrogen and carbon without consuming additional energy. The objective of this paper is to analyse whether earthworms modify the emissions of NH3, N2O, CH4 and CO2 during vermifiltration of pig slurry.The experiment used mesocosms of around 50 L, made from a vermifilter treating the diluted manure of a swine house. Three levels of slurry were added to the mesocosms, with or without earthworms, during one month, in triplicate. Earthworm abundance and gas emissions were measured three and five times, respectively.There was a decrease in emissions of ammonia and nitrous oxide and a sink of methane in treatments with earthworms. We suggest that earthworm abundance can be used as a bioindicator of low energy input, and low greenhouse gas and ammonia output in systems using fresh slurry with water recycling. 相似文献
4.
The small molecules already existing on the earth can be assembled to biological macromolecules in the presence of the suitable
tool. A workman must sharpen his tools if he is to do his work well. The tool must be specific, delicate and automatic. Obviously,
it is enzyme. Therefore, to explore the origin of life we must understand the origin of the manufacturing tool of biological
macromolecules—the origin of enzymes. We can understand more about the origin and evolution procedures of enzymes from the
NO2. NO2 can easily form the dimmer, N2O4. Four N2O4 molecules can coordinate with a suitable metal ion and form a plane super molecule with four N2O4 molecules. This supramolecule provides the basis for the appearance of enzymes: (1) It is the template for producing enzymes.
(2) It provides the active centers for enzymes. (3) It provides for the enzymes with specific function of chiral selection.
This supramolecule reacts with formaldehyde and porphyrin compound is gradually formed. Once suitable function groups are
substituted on the porphyrin ring, enzymes are formed. The primitive environment of earth can easily produce NO2 and CH2O. Therefore, this might be one clue to the origin of life.
相似文献
Xiangchen YinEmail: |
5.
Ralf Conrad 《Biogeochemistry》1994,27(3):155-170
The flux of a trace gas between soil and atmosphere is usually the result of simultaneously operating production and consumption processes. The compensation concentration is the concentration at which the rate of production equals the rate of consumption so that the net flux between soil and atmosphere is zero. Production and uptake may be due to different processes, which are at least partially known for some of the trace gases, and which may be differently regulated. The direction and the magnitude of the flux between soil and atmosphere is a function of both the compensation concentration and the trace gas concentration in the ambient atmosphere. Compensation and/or ambient concentrations may fluctuate and thus may have a strong impact on the flux of CO, NO and NO2, and to a smaller extent also on that of H2. Compensation concentrations also exist for N2O and OCS, but are too high to affect the flux under field conditions. Compensation concentrations have so far not been demonstrated for the flux of CH4. However, the uptake of CH4 by soil exhibits a threshold concentration below which no uptake occurs.Article invited in celebration of tenth anniversary ofBiogeochemistry. 相似文献
6.
Role of Microorganisms in Emission of Nitrous Oxide and Methane in Pulse Cultivated Soil Under Laboratory Incubation Condition 总被引:1,自引:0,他引:1
Jyotsnarani Jena Sanak Ray Haragobinda Srichandan Anuradha Das Trupti Das 《Indian journal of microbiology》2013,53(1):92-99
Soil from a pulse cultivated farmers land of Odisha, India, have been subjected to incubation studies for 40 consecutive days, to establish the impact of various nitrogenous fertilizers and water filled pore space (WFPS) on green house gas emission (N2O & CH4). C2H2 inhibition technique was followed to have a comprehensive understanding about the individual contribution of nitrifiers and denitrifiers towards the emission of N2O. Nevertheless, low concentration of C2H2 (5 ml: flow rate 0.1 kg/cm2) is hypothesized to partially impede the metabolic pathways of denitrifying bacterial population, thus reducing the overall N2O emission rate. Different soil parameters of the experimental soil such as moisture, total organic carbon, ammonium content and nitrate–nitrogen contents were measured at regular intervals. Application of external N-sources under different WFPS conditions revealed the diverse role played by the indigenous soil microorganism towards green house gas emission. Isolation of heterotrophic microorganisms (Pseudomonas) from the soil samples, further supported the fact that denitrification might be prevailing during specific conditions thus contributing to N2O emission. Statistical analysis showed that WFPS was the most influential parameter affecting N2O formation in soil in absence of an inhibitor like C2H2. 相似文献
7.
Summary This article reports on the use of short-hard pulse and spin-lock pulse combinations giving a binomial-like frequency response for the measurement of NMR spectra in aqueous solutions of quite dilute samples. The pulse sequence proposed provides excellent water suppression and does not introduce any linear or higher order phase errors. Application to the measurement of 2D NOESY data of a 0.25 mM solution of a double-stranded DNA fragment is presented. 相似文献
8.
免耕施肥对稻田甲烷与氧化亚氮排放及其温室效应的影响 总被引:12,自引:0,他引:12
2008年采用静态箱-气相色谱法对鄂东南免耕不施肥(NT0)、翻耕不施肥(CT0)、免耕施肥(NTC)和翻耕施肥(CTC) 4种处理下稻田CH4和N2O的排放进行测定.结果表明:各处理CH4排放均呈先升高后降低的季节性规律,而N2O排放的季节性规律不明显;施肥显著提高了稻田CH4和N2O的排放.与翻耕不施肥相比,免耕不施肥显著提高了CH4的排放量,并显著降低了N2O的排放量;与翻耕施肥相比,免耕施肥仅略降低了CH4的排放量和略提高了N2O的排放量.对稻田CH4和N2O两种气体的综合温室效应分析表明,与翻耕不施肥相比,免耕不施肥的综合温室效应提高了25.9%,与翻耕施肥相比,免耕施肥的综合温室效应降低了10.1%.因此,合理的肥料运筹和稻田免耕技术可降低两种气体的综合温室效应. 相似文献
9.
Coastal eutrophication by nutrient fluxes from agricultural land to marine recipients is presently combated by measures such as the implementation of watershed-scale wetland creation programs aimed at nitrogen removal. Such created agricultural wetlands - termed ‘nitrogen farming wetlands’ (NFWs) - receive nitrogen (N) loads predominantly as nitrate, facilitating N removal by denitrification. However, the conversion of agricultural soils into waterlogged wetland area is likely to increase climate gas emissions, particularly methane (CH4). There is thus a need to evaluate the benefits and risks of wetland creation at a large, watershed-scale.Here we investigate N retention and CH4 emission originating from watershed-scale wetland creation in South Sweden, the relation between both processes, and how CH4 emission depends on individual wetland parameters. We combine data from intensively studied reference wetlands with an extensive wetland survey to predict N retention and CH4 emission with simple models, to estimate the overall process rates (large-scale effects) as well as spatial variation among individual NFWs.We show that watershed-scale wetland creation serves targeted environmental objectives (N retention), and that CH4 emission is comparably low. Environmental benefit and risk of individual wetlands were not correlated, and may thus be managed independently. High cover of aquatic plants was the most important wetland property that suppressed CH4 net production, potentially facilitating N retention simultaneously. Further, differences between wetlands in water temperature and wetland age seemed to contribute to differences in CH4 net production. The nationally planned wetland creation (12,000 ha) could make a significant contribution to the targeted reduction of N fluxes (up to 27% of the Swedish environmental objective), at an environmental risk equaling 0.04% of the national anthropogenic climate gas emission. 相似文献
10.
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。 相似文献
11.
2007年6月-2008年6月,在帽儿山用静态箱/气相色谱法测定了相邻次生林和落叶松人工林土壤CH4和N2O通量,结果表明:次生林转变为落叶松人工林后土壤年CH4吸收和年N2O排放通量均显著增加,分别为次生林的1.2倍和3.6倍.两林分CH4和N2O通量表现相似的季节动态,生长季土壤CH4吸收通量和N2O排放通量均高于非生长季.次生林和落叶松人工林土壤CH4吸收通量与土壤温度均呈正相关关系,而与土壤含水量呈负相关关系.土壤N2O排放通量与土壤温度和土壤铵态氮含量均呈正相关关系,而与土壤含水量没有明显相关性.次生林转变为落叶松人工林后,落叶松林地较厚的凋落物层改变了林地土壤水分的格局,影响了土壤的CH4和N2O通量. 相似文献
12.
Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change 总被引:1,自引:0,他引:1
A potential effect of climatic change was simulated by manipulating the water table height within intact peat monoliths. The treatment decreased methane flux (maximum –80%) and increased both carbon dioxide flux (maximum 146%) and nitrous oxide flux maximum 936%). Returning the water table height to its original level caused both nitrous oxide and carbon dioxide flux to rapidly return to control levels. However, methane flux remained at its experimentally induced low levels. 相似文献
13.
Kristell Hergoualc’h Ute Skiba Jean-Michel Harmand Catherine Hénault 《Biogeochemistry》2008,89(3):329-345
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide
(N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and
litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season. 相似文献
14.
尽管植物在有氧环境是否有氧排放甲烷(CH4)一直存在很大的争议,但越来越多的研究证实植物自身可以排放CH4,而光照是影响植物排放CH4的重要因素。利用13C同位素标记技术结合盆栽实验,探讨了米槠和杉木叶片原位排放CH4的来源及其对太阳光照和遮阴处理的响应。结果表明,标记米槠和杉木叶片的碳稳定同位素13C值分别比未标记的高128.9和71.1倍;密封标记米槠和杉木叶片2h后的δ13CH4值分别比0h时高21.1倍和28.2倍,而未标记米槠和杉木在密封0h与2h时的δ13CH4值之间均没有显著差异,这证实了米槠和杉木排放的CH4主要源于他们自身。自然光照下,杉木的平均CH4排放速率比米槠的平均CH4排放速率高29%。自然光照下的米槠和杉木的CH4排放速率具有相同的波动规律;遮阴对米槠和杉木的CH4排放的影响不同,遮阴处理米槠的CH4排放速率显著低于自然光照处理,平均低23%;遮阴处理杉木的平均CH4排放速率与自然光照处理的没有显著差异,但在遮阴处理5d之后,其CH4排放速率比自然光照下的高71%,之后其CH4排放速率急剧下降,且明显低于自然光照下的CH4排放速率。以上结果表明,太阳光照促进了植物排放CH4的速率。 相似文献
15.
In order to gain information about seasonal and interannual variations of CH4-fluxes at a spruce control site, a limed spruce site and a beech site of the Höglwald Forest, Bavaria, Germany, complete annual cycles of CH4-exchange between the soil and the atmosphere with 2-hourly resolution were followed for 4 consecutive years. The ranges of CH4 fluxes observed for the different sites were: +12.4 to –69.4 g CH4 m–2 h–1 (spruce control site), +11.7 to –51.4 g CH4 m–2 h–1 (limed spruce site), and –4.4 to –167.3 g CH4 m–2 h–1 (beech site). Lowest rates of atmospheric CH4-uptake or even a weak net-emission of CH4 by the soils were observed during winter/spring times, whereas highest rates of CH4-uptake were always found in summer/spring. Over the entire observation period of 4 years, mean CH4-uptake rates were –1.82 kg CH4-C ha–1 yr–1 at the spruce control site, –1.31 kg CH4-C ha–1 yr–1 at the limed spruce site, and –4.84 kg CH4-C ha–1 yr–1 at the beech site. The results obtained in this study demonstrate that in view of the huge interannual variations in CH4-fluxes of approx. 1 kg CH4-C ha–1 yr–1, multiple year measurements of CH4-fluxes are necessary to accurately characterize the sink strength of temperate forest for atmospheric CH4. By comparison of CH4-fluxes measured at the spruce control site and the limed spruce site, a significant negative effect of forest floor liming on CH4-uptake could be demonstrated. Compared to the spruce stand, the beech stand showed on average approx. 3 times higher rates of atmospheric CH4-uptake, most likely due to pronounced differences between both sites with regard to the organic layer structure and bulk density of the mineral soil. Regression analysis between CH4-fluxes and environmental parameters revealed that at all sites the dominating factors regulating temporal variations of CH4 fluxes were soil moisture and soil temperature. Field measurements of CH4 concentrations in the soil profile and laboratory measurements of CH4-oxidation and CH4-production activity on soil samples taken from different soil depths showed that the CH4-flux at the Höglwald Forest sites is the net-result of simultaneous occurring production and consumption of CH4 within the soil. Highest CH4-oxidation activity was found in the uppermost centimeters of the mineral soil, whereas highest potential CH4-production activity was found in the organic layer. 相似文献
16.
O3 concentrations in the troposphere are rising and those in the stratosphere decreasing, the latter resulting in higher fluxes of solar ultraviolet-B (UV-B) radiation to the earth's surface. We assessed whether the fluxes of CO2 and CH4 are altered by enhanced UV-B radiation or elevated tropospheric O3 concentrations in boreal peatland microcosms (core depth 40 cm, diameter 10.5 cm) with different vegetation cover. At the end of the UV-B experiment which lasted for a growing season, net CO2 exchange (NEE) and dark ecosystem respiration (R TOT) were sevenfold higher, and CH4 efflux 12-fold higher, in microcosms with intact vegetation dominated by Eriophorum vaginatum L. and Sphagnum spp., compared to microcosms from which we removed E. vaginatum. Vegetation treatment had minor effects on CH4 production and consumption potentials in the peat, suggesting that the large difference in CH4 efflux is mainly due to efficient CH4 transport via the aerenchyma of E. vaginatum. Ambient UV-B supplemented with 30% and elevated O3 concentrations (100 and 200 ppb, for 7 weeks) significantly increased R TOT in both vegetation treatments. Elevated O3 concentrations reduced NEE over time, while UV-B had no clear effects on the fluxes of CO2 or CH4 in the cloudy summer of the study. Field experiments are needed to assess the significance of increasing UV-B radiation and elevated tropospheric O3 concentration on peatland gas exchange in the long-term. 相似文献
17.
AbstractThe Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulation methods were used to investigate the adsorption and diffusion properties of CH4 and CO2 in montmorillonite slit-nanopores. It is found that, both CH4 and CO2 could adsorb closely onto the pore surface, while different adsorption states occur for CH4 and CO2, respectively, in montmorillonite slit-nanopores. Competitive adsorption of CO2 over CH4 exists in montmorillonite slit-nanopores, especially at the lower pressures, which is attributed to the different interaction intensity between the CH4–CO2 molecules and the pore surface. The diffusion coefficients of CH4 and CO2 both decrease with the enhanced pressures, while the CO2 has a relative weak diffusion coefficient comparing with CH4. A well displacement of the residual CH4 by CO2 in montmorillonite slit-nanopores was investigated, which is found that the displacement efficiency increases with the enhanced bulk pressures. It was determined that, the CO2 can be captured and reserved in the montmorillonite slit-nanopores during the displacement, and the sequestration amount of CO2 gets enhanced with the bulk pressure increasing. This study provides micro-behaviours of CH4 and CO2 in montmorillonite slit-nanopores, for the purpose to give out useful guidance for enhancing shale gas extraction by injecting CO2. 相似文献
18.
Separation of important chemical feedstocks, such as C2H6 from natural gas, can greatly benefit the petrochemical industry. In this paper, the grand canonical Monte Carlo method has been used to study the adsorption and separation of CH4 and C2H6 in zeolites, isoreticular metal-organic framework-1 (IRMOF-1) and zeolitic imidazolate frameworks (ZIFs) with different topology, including soadlite, gmelinite and RHO topologies. Compared with mordenite zeolite and IRMOF-1, ZIFs and mordenite framework inverted (MFI) zeolite have better separation performance for C2H6/CH4 mixtures at different mole fractions of C2H6. From the study of equilibrium snapshots and density distribution profiles, adsorption sites could be grouped as (1) sites with strong interactions with adsorbent and (2) sites with strong interactions with surrounding adsorbates. The gas molecules occupied the first site and then went on to occupy the second site. In CH4/C2H6 mixture adsorption/separation, the adsorption of CH4 was confined by the existence of C2H6. Due to energetic effect, C2H6 selectivity was affected by temperature at a low-pressure range, but did not change as much in a high-pressure range because of packing effect in micropore. In binary adsorption, large C2H6 molecules favour sites with strong adsorbent interactions. At high pressures, packing effects played an important role and it became easy for small CH4 molecules to access the sites with strong adsorbate interactions. 相似文献
19.
Kimihiko Goto Masataka Kinjo Keiji Hashimoto Masahiro Ishigami 《Journal of molecular evolution》1986,23(2):113-118
Summary Various hydrocarbons were synthesized by high-frequency discharge in a primordial terrestrial model atmosphere. The products were extracted by benzene or methanol and analyzed by GC-MS. The mean carbon chain length of the hydrocarbons formed by the discharge through pure CH4 gas was less than 6. Benzene was also obtained. Some isomers were obtained for each of the hydrocarbons containing a given number of carbons. When a small amount of C2H2 was added to the CH4, longer chain compounds were formed, as compared with discharge in CH4 only. However, when the amount of C2H2 was increased, unextractable high molecular weight compounds were produced. The amounts of products decreased as the mixing ratio of CO2 to CH4 increased. No hydrocarbons were detected when the ratio of CO2/CH4 exceeded 1. 相似文献
20.
氮素是影响湿地甲烷代谢过程的重要因素之一。氮输入是否影响湿地甲烷排放,增加全球气候变暖的风险,一直受到科学界的高度关注。目前关于氮输入对湿地甲烷排放影响的几篇meta-analysis文章的主要结论均为氮输入促进湿地甲烷排放,但是多篇研究性论文的结果为氮输入抑制或不影响湿地甲烷排放,由此可见氮输入对湿地甲烷排放的影响十分复杂。湿地甲烷代谢包括湿地甲烷产生、氧化和传输过程以及最终的甲烷排放,综述不同形态氮输入对水稻田、内陆湿地和滨海湿地甲烷排放通量影响的复杂性;分析湿地甲烷产生速率和途径、甲烷好氧氧化和硝酸盐/亚硝酸盐型厌氧甲烷氧化对不同形态氮输入的响应及机制。硝态氮输入对湿地甲烷产生具有抑制作用已成共识,然而其它形态氮输入对湿地土壤甲烷产生的影响具有较大的不确定性,氮输入影响湿地甲烷产生的机制主要包括电子受体-底物竞争机制、离子毒性机制、促进植物生长-碳底物供给增加机制以及pH调控机制等。氮输入对湿地好氧甲烷氧化影响的研究多集中在水稻田和泥炭湿地,影响的结果包括促进、抑制或影响不显著;氮输入促进湿地土壤硝酸盐/亚硝酸盐型厌氧甲烷氧化。着重分析氮输入对湿地甲烷代谢影响不确定性的成因,指出... 相似文献