首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is proposed for the structure of stereospecific sites in regulatory proteins. On its basis a possible code is suggested that governs the binding of regulatory proteins at specific control sites on DNA. Stereospecific sites of regulatory proteins are assumed to contain pairs of antiparallel polypeptide chain segments which form a right-hand twisted antiparallel beta-sheet, with single-stranded regions at the ends of the beta-structure. The model predicts that binding reaction between a regulatory protein and double-helical DNA is a cooperative phenomenon and is accompanied by significant structural alteration at the stereospecific site of the protein. Half of hydrogen bonds normally existing in beta-structure are broken upon complex formation with DNA and a new set of hydrogen bonds is formed between polypeptide amide groups and DNA base pairs. In a stereospecific site, one chain (t-chain) is attached through hydrogen bonds to the carbonyl oxygens of pyramides and N3 adenines lying in one DNA strand, while the second polypeptide chain (g chain) is hydrogen bonded to the 2-amino groups of guanine residues lying in the opposite DNA strand. The amide groups serve as specific reaction sites being hydrogen bond acceptors in g-chain and hydrogen bond donors in t-chain. The single-stranded portions of t- and g-chains lying in neighbouring subunits of regulatory protein interact with each other forming deformed beta-sheets. The recognition of regulatory sequences by proteins is based on the structural complementarity between stereospecific sites of regulatory proteins and base pairs sequences at the control sites. An essential feature of these sequences is the asymmetrical distribution of guanine residues between the two DNA strands. The code predicts that there are six fundamental amino acid residues (serine, threonine, asparagine, histidine, glutamine and cysteine) whose sequence in stereospecific site determines the base pair sequence to which a given regulatory protein would bind preferentially. The code states a correspondence between four amino acid residues at the stereospecific site of regulatory protein with the two residues being in t- and g-segments, respectively, and AT(GC) base pair at the control site. It is thus possible to determine which amino acid residues in the repressor and which base pairs in the operator DNA are involved in specific interactions with each other, as exemplified by lac repressor binding to lac operator.  相似文献   

2.
3.
Roy S  Sahu A  Adhya S 《Gene》2002,285(1-2):169-173
A gene regulatory protein with helix-turn-helix (HTH) DNA-binding motif, GalS contains a functional operator within the DNA sequences encoding the HTH region (Nature 369 (1994) 314). We searched for operator-like sequences within the DNA sequences encoding the DNA binding motifs of other regulatory proteins. Five such proteins, DeoR, CytR, LRP, LuxR and PurR, were found to have actual operator or operator-like sequences in the DNA sequences encoding the DNA-binding motif. Except DeoR, all of them including GalS, are known to be auto-regulated. Auto-regulation in case of DeoR has not been investigated. Seven other proteins containing a HTH motif, do not have operator-like sequences in the DNA sequences encoding the HTH motif; none of them, except MerR, are known to be auto-regulated. The DNA binding proteins may have evolved from a common ancestor containing a DNA binding site within its gene segment that encodes the DNA-binding motif to facilitate auto-regulation. We have discussed current evidence for monophyletic or polyphyletic origin of such sequences.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Crowley EM 《Biopolymers》2001,58(2):165-174
A goal of the human genome project is to determine the entire sequence of DNA (3 x 10(9) base pairs) found in chromosomes. The massive amounts of data produced by this project require interpretation. A Bayesian model is developed for locating regulatory regions in a DNA sequence. Regulatory regions are areas of DNA to which specific proteins bind and control whether or not a gene is transcribed to produce templates for protein synthesis. Each human cell contains the same DNA sequence. Thus the particular function of different cells is determined by the genes that are transcribed in that cell. A Hidden Markov chain is used to model whether a small interval of the DNA is in a regulatory region or not. This can be regarded as a changepoint problem where the changepoints are the start of a regulatory or nonregulatory region. The data consists of protein-binding elements, which are short subsequences, or "words," in the DNA sequence. Although these words can occur anywhere in the sequence, a larger number are expected in regulatory regions. Therefore, regulatory regions are detected by locating clusters of words. For a particular DNA sequence, the model automatically selects those words that best predict regions of interest. Markov chain Monte Carlo methods are used to explore the posterior distribution of the Hidden Markov chain. The model is tested by means of simulations, and applied to several DNA sequences.  相似文献   

11.
The mammalian nuclear protein HMG1 contains two segments that show a high sequence similarity to each other. Each of the segments, produced separately from the rest of the protein in Escherichia coli, binds to DNA with high specificity: four-way junction DNA of various sequences is bound efficiently, but linear duplex DNA is not. Both isolated segments exists as dimers in solution, as shown by gel filtration and chemical crosslinking experiments. HMG1-like proteins are present in yeast and in protozoa: they consist of a single repetition of a motif extremely similar to the DNA binding segments of HMG1, suggesting that they too might form dimers with structural specificity in DNA binding. Sequences with recognizable similarity to either of the two DNA binding segments of HMG1, called HMG boxes, also occur in a few eukaryotic regulatory proteins. However, these proteins are reported to bind to specific sequences, suggesting that the HMG box of proteins distantly related to HMG1 might differ significantly from the HMG box of HMG1-like proteins.  相似文献   

12.
G B Ruvkun  V Sundaresan  F M Ausubel 《Gene》1982,18(3):247-255
Crude bacterial cell extracts prepared from an Escherichia coli lacIq strain were shown to protect specific nucleotides in the lac operator from methylation by dimethyl sulfate (DMS) or digestion by DNase I, whereas no protection was observed using extracts prepared from a nearly isogenic lacI- strain. These experiments show that it is not necessary to use purified regulatory proteins in experiments designed to localize sequences on DNA which interact with proteins. Therefore, crude cell extracts should be useful in DNA "footprinting" experiments to define regions of DNA which bind to unknown regulatory proteins.  相似文献   

13.
14.
15.
Although some DNA vaccines have proved to be very efficient in field trials, their authorisation still remains limited to a few countries. This is in part due to safety issues because most of them contain viral regulatory sequences to driving the expression of the encoded antigen. This is the case of the only DNA vaccine against a fish rhabdovirus (a negative ssRNA virus), authorised in Canada, despite the important economic losses that these viruses cause to aquaculture all over the world. In an attempt to solve this problem and using as a model a non-authorised, but efficient DNA vaccine against the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV), we developed a plasmid construction containing regulatory sequences exclusively from fish origin. The result was an “all-fish vector”, named pJAC-G, containing 5′ and 3′ regulatory sequences of β-acting genes from carp and zebrafish, respectively. In vitro and in vivo, pJAC-G drove a successful expression of the VHSV glycoprotein G (G), the only antigen of the virus conferring in vivo protection. Furthermore, and by means of in vitro fusion assays, it was confirmed that G protein expressed from pJAC-G was fully functional. Altogether, these results suggest that DNA vaccines containing host-homologous gene regulatory sequences might be useful for developing safer DNA vaccines, while they also might be useful for basic studies.  相似文献   

16.
17.
Two independent methods are used to evaluate the protein-coding information content in different classes of DNA sequences. The first method allows to evaluate the statistical relevance of finding unidentified reading frames, longer than 100 codons, on both DNA strands of: a) 117 DNA sequences that code for 142 nuclear proteins; b) 39 stable RNA coding sequences and c) 36 other DNA sequences which include regulatory and as yet unknown function sequences. The finding of 50 reading frames longer than 100 codons (complementary inverted proteins or c.i.p. genes) located on the DNA strand complementary to the protein-coding one is drastically in excess of the number predicted by chance alone. An independent method (testcode) applied to c.i.p. gene sequences, which assigns the probability of coding to a given sequence, predicts that more than 50% of these genes are translated in a functional product. These analyses indicate the existence of a new class of protein-coding genes, located on the DNA sequences complementary to the protein-coding DNA strand.  相似文献   

18.
A model is suggested for the lac repressor binding to the lac operator in which the repressor polypeptide chain sequences from Gly 14 to Ala 32 and from Ala 53 to Leu 71 are involved in specific interaction with operator DNA. A correspondence between the protein and DNA sequences is found which explains specificity of the repressor binding to the lac operator. The model can be extended to describe specific binding of other regulatory proteins to DNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号