首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from the ameba, Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cAMP (Abu- Elneel et al. 1996. J. Biol. Chem. 271:977- 984). Recent studies have indicated that cAMP-induced cGMP accumulation plays a role in the regulation of myosin II phosphorylation and localization (Liu, G., and P. Newell. 1991. J. Cell. Sci. 98: 483-490). This report describes the roles of cAMP and cGMP in the regulation of MHC-PKC membrane association, phosphorylation, and activity (hereafter termed MHC-PKC activities). cAMP stimulation of Dictyostelium cells resulted in translocation of MHC-PKC from the cytosol to the membrane fraction, as well as increasing in MHC-PKC phosphorylation and in its kinase activity. We present evidence that MHC is phosphorylated by MHC-PKC in the cell cortex which leads to myosin II dissociation from the cytoskeleton. Use of Dictyostelium mutants that exhibit aberrant cAMP- induced increases in cGMP accumulation revealed that MHC-PKC activities are regulated by cGMP. Dictyostelium streamer F mutant (stmF), which produces a prolonged peak of cGMP accumulation upon cAMP stimulation, exhibits prolonged increases in MHC-PKC activities. In contrast, Dictyostelium KI-10 mutant that lacks the normal cAMP-induced cGMP response, or KI-4 mutant that shows nearly normal cAMP-induced cGMP response but has aberrant cGMP binding activity, show no changes in MHC- PKC activities. We provide evidence that cGMP may affect MHC-PKC activities via the activation of cGMP-dependent protein kinase which, in turn, phosphorylates MHC-PKC. The results presented here indicate that cAMP-induced cGMP accumulation regulates myosin II phosphorylation and localization via the regulation of MHC-PKC.  相似文献   

2.
Myosin heavy chain kinase (MHCK) A phosphorylates mapped sites at the C-terminal tail of Dictyostelium myosin II heavy chain, driving disassembly of myosin filaments both in vitro and in vivo. MHCK A is organized into three functional domains that include an N-terminal coiled-coil region, a central kinase catalytic domain unrelated to conventional protein kinases, and a WD repeat domain at the C terminus. MHCK B is a homologue of MHCK A that possesses structurally related catalytic and WD repeat domains. In the current study, we explored the role of the WD repeat domains in defining the activities of both MHCK A and MHCK B using recombinant bacterially expressed truncations of these kinases either with or without their WD repeat domains. We demonstrate that substrate targeting is a conserved function of the WD repeat domains of both MHCK A and MHCK B and that this targeting is specific for Dictyostelium myosin II filaments. We also show that the mechanism of targeting involves direct binding of the WD repeat domains to the myosin substrate. To our knowledge, this is the first report of WD repeat domains physically targeting attached kinase domains to their substrates. The examples presented here may serve as a paradigm for enzyme targeting in other systems.  相似文献   

3.
Dictyostelium myosin II heavy chain kinase A (MHCK A), MHCK B, and MHCK C contain a novel type of protein kinase catalytic domain that displays no sequence identity to the catalytic domain present in conventional serine, threonine, and/or tyrosine protein kinases. Several proteins, including myelin basic protein, myosin regulatory light chain, caldesmon, and casein were phosphorylated by the bacterially expressed MHCK A, MHCK B, and MHCK C catalytic domains. Phosphoamino acid analyses of the proteins showed that 91 to 99% of the phosphate was incorporated into threonine with the remainder into serine. Acceptor amino acid specificity was further examined using a synthetic peptide library (MAXXXX(S/T)XXXXAKKK; where X is any amino acid except cysteine, tryptophan, serine, and threonine and position 7 contains serine and threonine in a 1.7:1 ratio). Phosphorylation of the peptide library with the three MHCK catalytic domains resulted in 97 to 99% of the phosphate being incorporated into threonine, while phosphorylation with a conventional serine/threonine protein kinase, the p21-activated kinase, resulted in 80% of the phosphate being incorporated into serine. The acceptor amino acid specificity of MHCK A was tested directly by substituting serine for threonine in a synthetic peptide and a glutathione S-transferase fusion peptide substrate. The serine-containing substrates were phosphorylated at a 25-fold lower rate than the threonine-containing substrates. The results indicate that the MHCKs are specific for the phosphorylation of threonine.  相似文献   

4.
Protein kinase C phosphorylates different sites on the 20,000-Da light chain of smooth muscle heavy meromyosin (HMM) than did myosin light chain kinase (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072). Although protein kinase C incorporates 1 mol of phosphate into 1 mol of 20,000-Da light chain when either HMM or the whole myosin molecule is used as a substrate, it catalyzes the incorporation of up to 3 mol of phosphate/mol of 20,000-Da light chain when the isolated light chains are used as a substrate. Threonine is the major phosphoamino acid resulting from phosphorylation of HMM by protein kinase C. Prephosphorylation of HMM by protein kinase C decreases the rate of phosphorylation of HMM by myosin light chain kinase due to a 9-fold increase of the Km for prephosphorylated HMM compared to that of unphosphorylated HMM. Prephosphorylation of HMM by myosin light chain kinase also results in a decrease of the rate of phosphorylation by protein kinase C due to a 2-fold increase of the Km for HMM. Both prephosphorylations have little or no effect on the maximum rate of phosphorylation. The sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C results in a decrease in actin-activated MgATPase activity due to a 7-fold increase of the Km for actin over that observed with phosphorylated HMM by myosin light chain kinase but has little effect on the maximum rate of the actin-activated MgATPase activity. The decrease of the actin-activated MgATPase activity correlates well with the extent of the additional phosphorylation of HMM by protein kinase C following initial phosphorylation by myosin light chain kinase.  相似文献   

5.
Two-dimensional mapping of the tryptic phosphopeptides generated following in vitro protein kinase C phosphorylation of the myosin heavy chain isolated from human platelets and chicken intestinal epithelial cells shows a single radioactive peptide. These peptides were found to comigrate, suggesting that they were identical, and amino acid sequence analysis of the human platelet tryptic peptide yielded the sequence -Glu-Val-Ser-Ser(PO4)-Leu-Lys-. Inspection of the amino acid sequence for the chicken intestinal epithelial cell myosin heavy chain (196 kDa) derived from cDNA cloning showed that this peptide was identical with a tryptic peptide present near the carboxyl terminal of the predicted alpha-helix of the myosin rod. Although other vertebrate nonmuscle myosin heavy chains retain neighboring amino acid sequences as well as the serine residue phosphorylated by protein kinase C, this residue is notably absent in all vertebrate smooth muscle myosin heavy chains (both 204 and 200 kDa) sequenced to date.  相似文献   

6.
Treatment of human platelets with 162 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in phosphorylation of a number of peptides, including myosin heavy chain and the 20-kDa myosin light chain. The site phosphorylated on the myosin heavy chain was localized by two-dimensional peptide mapping to a serine residue(s) in a single major tryptic phosphopeptide. This phosphopeptide co-migrated with a tryptic peptide that was produced following in vitro phosphorylation of platelet myosin heavy chain using protein kinase C. The sites phosphorylated in the 20-kDa myosin light chain in intact cells were analyzed by two-dimensional mapping of tryptic peptides and found to correspond to Ser1 and Ser2 in the turkey gizzard myosin light chain. In vitro phosphorylation of purified human platelet myosin by protein kinase C showed that in addition to Ser1 and Ser2, a third site corresponding to Thr9 in turkey gizzard myosin light chain is also phosphorylated. The phosphorylatable myosin light chains from human platelets were found to consist of two major isoforms present in approximately equal amounts, but differing in their molecular weights and isoelectric points. A third, minor isoform was also visualized by two-dimensional gel electrophoresis. Following treatment with TPA, both the mono- and diphosphorylated forms of each isoform could be visualized, and the sites of phosphorylation were identified. The phosphate content rose from negligible amounts found prior to treatment with TPA to 1.2 mol of phosphate/mol of myosin light chain and 0.7 mol of phosphate/mol of myosin heavy chain following treatment. These results suggest that TPA mediates phosphorylation of both myosin light and heavy chains in intact platelets by activation of protein kinase C.  相似文献   

7.
Casein kinase II from bovine brain transfers about one mole of phosphate to a serine residue near the COOH terminus of the heavy chain of myosin isolated from bovine brain. We have purified and characterized a peptide that contains this phosphoserine. The peptide was generated by chymotryptic and thermolytic digestion and was isolated by gel filtration, Fe3+ affinity chromatography, and reverse-phase high pressure liquid chromatography. Its sequence, Leu-Glu-Leu-Ser(PO4)-Asp-Asp-Asp-Asp-Glu-Ser-Lys-Ala-Ser-(Xaa)-Ile-Asn-Glu-Thr- Gln-Pro-Pro-Gln, shows that the Ser(PO4) is in an acidic environment, as is typical for casein kinase II phosphorylation sites. The "hydrophobic repeat" typical of alpha-helical coiled-coils is absent, suggesting that the sequence is part of a non-helical "tail piece" of the heavy chain. A synthetic peptide corresponding to residues 1-9 is shown to be an effective substrate for casein kinase II.  相似文献   

8.

Background  

Cortical myosin-II filaments in Dictyostelium discoideum display enrichment in the posterior of the cell during cell migration and in the cleavage furrow during cytokinesis. Filament assembly in turn is regulated by phosphorylation in the tail region of the myosin heavy chain (MHC). Early studies have revealed one enzyme, MHCK-A, which participates in filament assembly control, and two other structurally related enzymes, MHCK-B and -C. In this report we evaluate the biochemical properties of MHCK-C, and using fluorescence microscopy in living cells we examine the localization of GFP-labeled MHCK-A, -B, and -C in relation to GFP-myosin-II localization.  相似文献   

9.
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.  相似文献   

10.
The initial step in the purification of Dictyostelium myosin II heavy chain kinase A (MHCK A) is chromatography over phosphocellulose. Fractions containing MHCK A are pooled and chromatographed over a Mono Q column (Pharmacia LKB Biotechnology) equilibrated in 0.15 M KCl. Under these conditions MHCK A and most of the contaminating proteins elute in the flowthrough. The addition of Mg2+ and ATP to the Mono Q flowthrough results in the phosphorylation, within 15 min, of MHCK A to a level of 10 mol of phosphate per mole of 130-kDa kinase subunit. The hyperphosphorylated MHCK A binds to Mono Q columns in the presence of 0.15 M KCl and can be eluted, as a single homogeneous band, by a salt gradient to 0.35 M KCl. A similar purification procedure may prove useful for other proteins which can be highly phosphorylated. Hyperphosphorylation is shown to have no effect on the position at which MHCK A elutes from gel filtration columns (apparent M(r) greater than 700,000).  相似文献   

11.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

12.
Nonmuscle myosin II plays fundamental roles in cell body translocation during migration and is typically depleted or absent from actin-based cell protrusions such as lamellipodia, but the mechanisms preventing myosin II assembly in such structures have not been identified [1-3]. In Dictyostelium discoideum, myosin II filament assembly is controlled primarily through myosin heavy chain (MHC) phosphorylation. The phosphorylation of sites in the myosin tail domain by myosin heavy chain kinase A (MHCK A) drives the disassembly of myosin II filaments in vitro and in vivo [4]. To better understand the cellular regulation of MHCK A activity, and thus the regulation of myosin II filament assembly, we studied the in vivo localization of native and green fluorescent protein (GFP)-tagged MHCK A. MHCK A redistributes from the cytosol to the cell cortex in response to stimulation of Dictyostelium cells with chemoattractant in an F-actin-dependent manner. During chemotaxis, random migration, and phagocytic/endocytic events, MHCK A is recruited preferentially to actin-rich leading-edge extensions. Given the ability of MHCK A to disassemble myosin II filaments, this localization may represent a fundamental mechanism for disassembling myosin II filaments and preventing localized filament assembly at sites of actin-based protrusion.  相似文献   

13.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

14.
The heavy chain of smooth muscle myosin was found to be phosphorylated following immunoprecipitation from cultured bovine aortic smooth muscle cells. Of a variety of serine/threonine kinases assayed, only casein kinase II and calcium/calmodulin-dependent protein kinase II phosphorylated the smooth muscle myosin heavy chain to a significant extent in vitro. Two-dimensional maps of tryptic peptides derived from heavy chains phosphorylated in cultured cells revealed one major and one minor phosphopeptide. Identical tryptic peptide maps were obtained from heavy chains phosphorylated in vitro with casein kinase II but not with calcium/calmodulin-dependent protein kinase II. Of note, the 204-kDa smooth muscle myosin heavy chain but not the 200-kDa heavy chain isoform was phosphorylated by casein kinase II. Partial sequence of the tryptic phosphopeptides generated following phosphorylation by casein kinase II yielded Val-Ile-Glu-Asn-Ala-Asp-Gly-Ser*-Glu-Glu-Glu-Val. The Ser* represents the Ser(PO4) which is in an acidic environment, as is typical for casein kinase II phosphorylation sites. By comparison with the deduced amino acid sequence for rabbit uterine smooth muscle myosin (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737), we have localized the phosphorylated serine residue to the non-helical tail of the 204-kDa isoform of the smooth muscle myosin heavy chain. The ability of the 204-kDa isoform, but not the 200-kDa isoform, to serve as a substrate for casein kinase II suggests that these two isoforms can be regulated differentially.  相似文献   

15.
The actin-activated Mg2(+)-ATPase activities of myosins I from Acanthamoeba castellanii are fully expressed only when a single amino acid on their heavy chain is phosphorylated by myosin I heavy chain kinase. Here we show that kinase isolated by a procedure designed to minimize its phosphorylation during purification can incorporate up to 7.5 mol of phosphate/mol of enzyme when incubated with ATP, possibly by autophosphorylation. The rate of phosphorylation is enhanced about 20-fold by phosphatidylserine but is unaffected by calcium ions. Phosphorylation increases the rate at which the kinase phosphorylates the regulatory site of myosin I by about 50-fold. These results suggest that (auto?)phosphorylation may regulate the activity of myosin I heavy chain kinase in vivo. The stimulation of kinase phosphorylation by phosphatidylserine (other phospholipids have not yet been tested) is of particular interest because myosin I has been shown to be tightly associated with membranes, especially the plasma membrane.  相似文献   

16.
Conformational studies of myosin phosphorylated by protein kinase C   总被引:2,自引:0,他引:2  
Smooth muscle myosin from chicken gizzard is phosphorylated by Ca2+-activated phospholipid-dependent protein kinase, protein kinase C, as well as by Ca2+/calmodulin-dependent kinase, myosin light chain kinase (Endo, T., Naka, M., and Hidaka, H. (1982) Biochem. Biophys. Res. Commun. 105, 942-948). We have now demonstrated the effect of phosphorylation by protein kinase C on the smooth muscle myosin molecule. In glycerol/urea polyacrylamide gel electrophoresis the 20,000-dalton light chain phosphorylated by protein kinase C co-migrated with that phosphorylated by myosin light chain kinase. Moreover, the light chain phosphorylated by both kinases migrated more rapidly than did the light chain phosphorylated by either myosin light chain kinase or protein kinase C alone. Myosin phosphorylated by protein kinase C formed a bent 10 S monomer while that phosphorylated by myosin light chain kinase was an unfolded and extended 6 S monomer in the presence of 0.2 M KCl. In addition, myosin phosphorylated by kinases had a sedimentation velocity of 7.3 S, thereby suggesting that the myosin was partially unfolded. The unfolded myosin was visualized electron microscopically. The fraction in the looped form was higher when for myosin phosphorylated by both kinases higher than for that phosphorylated by light chain kinase alone. Therefore, phosphorylation by protein kinase C does not lead to the change in myosin conformation seen with myosin light chain kinase.  相似文献   

17.
Phosphorylation of bovine platelet myosin by protein kinase C   总被引:8,自引:0,他引:8  
M Ikebe  S Reardon 《Biochemistry》1990,29(11):2713-2720
Bovine platelet myosin is phosphorylated by protein kinase C at multiple sites. Most of the phosphate is incorporated in the 20,000-dalton light chain although some phosphate is incorporated in the heavy chain. Phosphorylation of the 20,000-dalton light chain of platelet myosin is 10 times faster than the phosphorylation of smooth muscle myosin. Platelet myosin light chain is first phosphorylated at a threonine residue followed by a serine residue. Dominant phosphorylation sites of the 20,000-dalton light chain are estimated as serine-1, serine-2, and threonine-9. Prolonged phosphorylation by protein kinase C resulted in an additional phosphorylation site which, on the basis of limited proteolysis, appears to be either serine-19 or threonine-18. Phosphorylation by protein kinase C causes an inhibition of actin-activated ATPase activity of platelet myosin prephosphorylated by myosin light chain kinase. Inhibition of ATPase activity is due to a decreased affinity of myosin for actin, and no change in Vmax is observed. It is shown that platelet myosin also exhibits the 6S to 10S conformation transition as judged by viscosity and gel filtration methods. Mg2(+)-ATPase activity of platelet myosin is paralleled with the 10S-6S transition. Phosphorylation by protein kinase C affects neither the 10S-6S transition nor the myosin filament formation. Therefore, the inhibition of actin-activated ATPase activity of platelet myosin is not due to the change in the myosin conformation.  相似文献   

18.
The initial step in the purification of Dictyostelium myosin 11 heavy chain kinase A (MHCK A) is chromatography over phosphocellulose. Fractions containing MHCK A are pooled and chromatographed over a Mono Q column (Pharmacia LKB Biotechnology) equilibrated in 0.15 M KCl. Under these conditions MHCK A and most of the contaminating proteins elute in the flowthrough. The addition of Mg2+ and ATP to the Mono Q flowthrough results in the phosphorylation, within 15 min, of MHCK A to a level of 10 mol of phosphate per mole of 130-kDa kinase subunit. The hyperphosphorylated MHCK A binds to Mono Q columns in the presence of 0.15 M KCl and can be eluted, as a single homogeneous band, by a salt gradient to 0.35 m KCl. A similar purification procedure may prove useful for other proteins which can be highly phosphorylated. Hyperphosphorylation is shown to have no effect on the position at which MHCK A elutes from gel filtration columns (apparent Mr greater than 700,000).  相似文献   

19.
Protein kinase C phosphorylated both the 19/21-kDa regulatory light chains and heavy chains of bovine brain myosin. The major phosphorylation sites of the light chains were on their threonyl residues, while those for myosin light chain kinase were on their seryl residues. Whereas several non-muscle regular myosins have been reported to be phosphorylated by different types of protein kinases at the non-helical small segments at the tail ends of the heavy chains, the phosphorylation sites for protein kinase C were localized on the head portion of the heavy chains of brain myosin. The possible role of phosphorylation of brain myosin by protein kinase C in the regulation of motility of neural cells is discussed.  相似文献   

20.
A Dictyostelium discoideum myosin heavy chain kinase has been purified 14,000-fold to near homogeneity. The enzyme has a Mr = 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and greater than 700,000 as determined by gel filtration on Bio-Gel A-1.5m. The enzyme has a specific activity of 1 mumol/min X mg when assayed at a Dictyostelium myosin concentration of 0.3 mg/ml. A maximum of 2 mol of phosphate/mol of myosin is incorporated by the kinase, and the phosphorylated amino acid is threonine. Phosphate is incorporated only into the myosin heavy chains, not into the light chains. The actin-activated Mg2+-ATPase of Dictyostelium myosin is inhibited 70-80% following maximal phosphorylation with the kinase. The myosin heavy chain kinase requires 1-2 mM Mg2+ for activity and is most active at pH 7.0-7.5. The activity of the enzyme is not significantly altered by the presence of Ca2+, Ca2+ and calmodulin, EGTA, cAMP, or cGMP. When incubated with Mg2+ and ATP, phosphate is incorporated into the myosin heavy chain kinase, perhaps by autophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号