首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-2 receptors (IL-2R) are expressed on minor populations of immature and mature human thymocytes. These studies were designed to determine if immature T cells could respond to the mitogen phytohemagglutinin (PHA-P) plus IL-2 in vitro by increasing the expression of IL-2R and by proliferation. Using monoclonal antibodies to CD5 and magnetic immunobeads we were able to remove all mature, "bright" CD5+ cells from nylon wool-purified thymocytes and to obtain less mature cells which consisted almost completely of cells with the CD4+CD8+ phenotype. These immature cells were mostly "dim" CD5+ and less than 5% CD5- and a small percentage expressed the IL-2R. After culture in serum-free medium with PHA-P, these cells showed only a slight increase in the percentage of IL-2R+ cells and the addition of IL-2 did not increase the percentage of IL-2R+ cells and no proliferation was observed. Unseparated, nylon wool-purified thymocytes contained 14% bright CD5+ cells. These bright CD5+ cells had a mature phenotype of CD4+CD8- (52%) and CD4-CD8+ (27%) cells. A small percentage of these cells were IL-2R+. These bright CD5+IL-2R+ cells were predominantly mature CD4+CD8- cells as measured by three-color flow cytometry. After culture with PHA-P and IL-2, the percentage of IL-2R+ cells increased and they were now found not only on CD4+CD8- but also on CD4-CD8+ and on CD4+CD8+ cells. IL-2 plus PHA-P increased proliferation of these cells as compared to those cultured in medium with PHA-P without IL-2. Thus, we show that human immature thymocytes in contrast to mature thymocytes are not responsive to IL-2 as measured by a lack of IL-2R expression and proliferation. These data indicate that mature thymocytes can express a functional high affinity receptor for IL-2 and suggest that immature thymocytes may not possess a (functional) p75 chain of the IL-2R.  相似文献   

2.
Human thymocytes and thymocyte subsets were examined for their proliferative response to recombinant interleukin-4 (IL-4) and interleukin-3 (IL-3) in serum-free cultures. IL-4 induced marked proliferation of thymocytes after PHA and TPA stimulation, in contrast to the marginal response of T cells from adult peripheral blood. However, depletion of thymocytes bearing the CD3 antigen diminished the IL-4-induced proliferation of thymocytes, indicating that the response of thymocytes to IL-4 is mainly mediated by the CD3-positive cells. Phenotypic changes after culture with IL-4 showed an increase in the percentage of total thymocytes expressing mature T cell antigens (CD3, CD5, and TCR-1) and a decrease in CD1-positive cells. In addition there was an increase in the percentage of CD4+8- cells in both nylon wool-separated thymocytes and CD3-depleted cells with the disappearance of most of the CD4+8+ cells. However, an increase in the percentage of CD4-8- cells was also observed. The IL-4-responding cells do, however, express the mature T cell antigen, CD5, in high density. The effect of IL-3 on the proliferation of human thymocytes was very low and detected only when the thymocytes were cultured in serum-free medium. Depletion of CD3-positive cells did not diminish the IL-3-mediated proliferation of thymocytes, indicating that IL-3-responsive thymocytes are more immature than the subset of thymocytes which responds to IL-4. These results suggest that IL-4 and IL-3 play different roles in the development of human T cells.  相似文献   

3.
In this report, the effect of interleukin 4 (IL-4) on the growth and differentiation of Lyt-2-/L3T4-(2-4-) thymocytes was investigated. It was found that these thymocytes proliferated extensively when cultured in the presence of IL-4 + phorbol myristate acetate without apparent differentiation to Lyt-2+ or L3T4+ cells. We also demonstrated that 2-4- thymocytes constitutively express a high affinity (dissociation constant of 20 to 40 pM) receptor for IL-4. Freshly isolated 2-4- thymocytes expressed on average about 100 IL-4 receptors per cell, but the number of receptors increased approximately 8-fold within 3 days after activation by IL-4 + phorbol myristate acetate. These findings suggest that IL-4 may play an important role in T cell ontogeny by promoting self-renewal of stem cells within the thymus.  相似文献   

4.
By using sensitive three-color fluorescence flow cytometric techniques, we were able to identify a T4+T8+ thymocyte with high T3 surface density (T3H) representing 4 to 9% of thymocytes. To characterize the T3HT4+T8+ cell, thymic subpopulations with high T3 surface density (T3H) and lower T3 density (T3L/T3-) were compared with regard to T6 expression. The T3H subpopulation was characterized by lower numbers of T6+ cells and reduced levels of T6 antigen density, whereas the T3L/T3- population was greater than 90% T6+ and expressed this antigen at high cell surface density. In addition, T3H fractions appeared to possess higher levels of nuclear activation with respect to the T3L/T3- population as indicated by increased log 90 degrees scatter profiles. These results suggest that thymocytes with high T3 surface expression are not only more differentiated, but also more activated than the majority of the thymic population. The T3HT4+T8+ fraction could be distinguished from T4+T8+ thymocytes with lower T3 density not only by an increased log 90 degrees scatter profile, but also by the presence of T4+T8+ cells with reduced levels of T8 surface antigen. Our results indicate that T4+T8+ thymocytes with high T3 surface density are a distinct subpopulation and may represent the immediate precursors of the phenotypically more mature T3HT4+T8- and T3HT8+T4- subpopulations found in human thymus.  相似文献   

5.
The 10D1 Ag is a 90-kDa homodimeric molecule specifically expressed on a subpopulation of human T cells, and is involved in an alternative pathway of T cell activation. In the present study, we have examined the expression and function of the 10D1 Ag on human thymocytes. Three-color FMF analysis showed that the 10D1 Ag was highly expressed on minor but distinct subpopulations of double-negative and CD4 single-positive thymocytes, and weakly on a part of double-positive thymocytes, but not on CD8 single-positive thymocytes. In double-negative thymocytes, the vast majority of 10D1+ cells were immature thymocytes of CD7+2+3- phenotype. Interestingly, 10D1 mAb could induce the proliferation of CD4 single-positive thymocytes in the presence of goat anti-mouse Ig to cross-link the 10D1 Ag. The treatment of thymocytes with OKT4 mAb plus C but not with OKT8 mAb plus C totally abrogated the proliferative response induced by 10D1 mAb, indicating that the 10D1-responsible thymocytes were of CD4+8- phenotype. This 10D1 mAb-induced thymocyte proliferation was perfectly dependent on the endogenous IL-2/IL-2R system since a complete inhibition was observed with anti-IL-2 and anti-IL-2R mAb. The proliferating CD4 single positive thymocytes predominantly expressed the IL-2R alpha (p55) but not a detectable level of the IL-2R beta (p75). These results indicate that, although the 10D1 Ag can be detected on the CD7+2+3-4-8- thymocytes, its functional expression is restricted to a minor more mature CD4+ thymocyte population as well as in peripheral blood T cells, and the implications of these findings are discussed.  相似文献   

6.
7.
Interleukin-1 has been reported to be involved in thymocyte development by exerting a variety of effects on immature CD4-CD8- double-negative (DN) thymocytes. In contrast to the well-documented involvement of IL-1 in thymocyte development, expression of IL-1 receptors (IL-1R) on thymocytes has not been well demonstrated. In the present study, expression of IL-1R on the developing thymocytes was investigated. Although normal thymocytes barely express IL-1R, expression of IL-1R (type I) substantially increased at days 12-15 of foetal thymic organ culture (FTOC), with an increase of the DN subset. The CD4/CD8 profile of the IL-1R (type I)+ cells showed that these cells were mostly restricted to the DN and CD4+CD8+ subsets. Interestingly, in vitro culture of the thymocytes from an aged mouse, but not those from young adult or newborn mice, revealed similar results to those of FTOC. In addition, half of the IL-1R+ cells that increased in the later period of FTOC were gammadelta thymocytes. These results demonstrate IL-1R expression on thymocytes during ex vivo culture and suggest that IL-1R is expressed in a certain environment during normal thymocyte differentiation.  相似文献   

8.
IL-10, a novel growth cofactor for mature and immature T cells   总被引:27,自引:0,他引:27  
We identified a new cytokine, B cell-derived T cell growth factor (B-TCGF), that is produced by a murine B cell lymphoma and induces proliferation of mature and immature thymocytes in the presence of IL-2 and IL-4. Both adult and day 15 fetal thymocytes (CD4-8-, CD4+8-, CD4-8+) proliferate strongly in the presence of IL-2, IL-4, and B-TCGF. B-TCGF alone does not stimulate thymocyte proliferation. B-TCGF appears to be identical to a novel cytokine whose cDNA was recently isolated at our institution, cytokine synthesis-inhibitory factor (CSIF; IL-10). rIL-10 has B-TCGF activity, and mAb specific for IL-10 inhibit the B-TCGF activity present in CH12 supernatants. Further studies have shown that day 15 fetal thymocytes cultured in the presence of IL-10, IL-2, and IL-4 remain CD4- and CD8- but exhibit increased CD3 expression. Adult CD4- CD8- thymocytes cultured under the same conditions proliferate whether they are CD3+ or CD3-. The CD3- population becomes enriched in CD3+ cells after 4 days of culture. IL-10 is secreted by day 15 fetal thymocytes, adult thymocytes, and adult splenocytes when stimulated via their TCR. IL-10 is strongly homologous to the EBV gene BCRFI, and BCRFI has CSIF activity. In contrast to IL-10, BCRFI does not exhibit detectable thymocyte-stimulating activity, suggesting the existence of at least two functional epitopes on the IL-10 molecule.  相似文献   

9.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

10.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

11.
Previous studies have indicated that the human thymus is composed of several discrete compartments. Cortical thymocytes are reactive with the monoclonal antibody anti-T6, whereas most medullary cells, unreactive with anti-T6, stain brightly with anti-T3 antibody, which defines mature T cell populations. By using an indirect immune rosette method, we isolated the minor thymocyte population (1 to 2% of all thymocytes) lacking both T3 and T6 but expressing T11 antigens. These cells could be maintained in culture supplemented with recombinant IL 2 (Rec-IL 2) for several days. Under these conditions, T3-T6- cells were shown to undergo phenotypic changes. In the absence of thymic macrophage (Mo), T3+ and T8+ thymocytes appeared in culture, whereas the development of T4+ cells strictly required the presence of Mo. The expression of T4 antigen could be largely prevented by the addition of anti-HLA-DR antibody, further indicating that Ia+ accessory cells had the ability to promote in vitro development of T4+ thymocytes. In the presence of Mo, not only T4+ but also T8+ cells were obtained. Double fluorescence staining with anti-T8-FITC and anti-T4-biotin demonstrated that after 12 days of culture, T4 and T8 antigens were mutually exclusive. Furthermore, during the course of these studies, we observed that under the culture conditions utilized (e.g., presence or absence of Mo), T3-T6-thymocytes failed to express the T6 antigen. Thus, the in vitro development of T cells bearing a mature phenotype could be obtained in the absence of intermediate expression of cortical (T6+) thymocytes.  相似文献   

12.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

13.
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3-CD4-CD8-, CD4+CD8+, and CD3highCD4-CD8+ thymocytes but is down-regulated on approximately 40% of CD3highCD4+CD8- thymocytes. Expression on peripheral TCR-alphabeta+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2-/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8- thymocytes and TCR-gamma delta+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.  相似文献   

14.
Integrins are a superfamily of alpha beta heterodimers, most of which serve as cell surface receptors for extracellular matrix proteins. In this report, we demonstrate that the recently described alpha 6 beta 4 integrin, previously thought to be limited to epithelial cells and Schwann cells, is expressed on immature mouse thymocytes. The presence of alpha 6 beta 4 is controlled by regulation of beta 4 expression, because alpha 6 was expressed by virtually all cells examined, paired with the beta 1 integrin chain to form VLA-6. During fetal ontogeny, beta 4 was highly expressed by 35% of day-13 thymocytes, 75% of day-14 to -15 thymocytes, then rapidly declined to low levels by birth. In neonates and adults, beta 4 expression was highest on CD4- CD8- CD3- and TCR(+)-gamma delta subsets. Correlation of IL-2R, CD44 and beta 4 on CD4- CD8- thymocytes revealed maximal levels on the intermediate CD44- IL-2R+ subset. Most CD4- CD8+ TCR- thymocytes and a significant fraction of CD4+ CD8+ thymocytes were beta 4lo, whereas the most mature J11d- single positive thymocytes were beta-4. Overall, down-regulation of beta 4 was associated with up-regulation of CD4, CD8, and CD3 in the thymus. alpha 6 beta 4 was undetectable on fetal liver or bone marrow cells, lymphocytes from lymph node, spleen, or blood, and mitogen-activated splenic T cells cultured up to 10 wk with IL-2. The data suggest that alpha 6 beta 4 is up-regulated after pro-T cells enter the thymus and may have a thymus-specific function for T cells. The developmentally regulated pattern of expression and the prominence of alpha 6 beta 4 on day-13 to -16 fetal and adult CD4- CD8- CD3- thymocytes further suggest this unusual integrin may play a role in early T cell development, including stages before acquisition of the TCR.  相似文献   

15.
Thymic stromal cell clone, TNC-R3.1 cell, was established from spontaneous AKR/J mouse thymoma. TNC-R3.1 cell, which has the similar properties to thymic nurse cells, formed a unique complex with normal thymocyte subpopulations. Flow cytometry analysis demonstrated that CD4+8+ and CD4-8- immature thymocytes preferentially interacted with TNC-R3.1 stromal cell clone. CD4+8+ thymocytes, which interacted with TNC-R3.1 stromal cell clone, contained a higher proportion of large size and cycling T cells than did noninteracting CD4+8+ thymocytes. As is generally accepted, CD4+8+ thymocytes did not respond to any stimulation such as IL-2, anti-CD3 mAb (2C11), or IL-2 plus 2C11. However, culture of isolated CD4+8+ thymocytes on TNC-R3.1 stromal cell monolayer in the presence of suboptimal dose of IL-2 induced a significant cell growth. Moreover, the addition of 2C11 and IL-2 into this coculture system resulted in a dramatic increase of the proliferative response of thymocytes. Flow cytometry analysis showed the proliferating cells on TNC-R3.1, which originated from CD4+8+ thymocytes, were mostly TCR-alpha beta+ CD3+CD4-8+ T cells. These results provide in vitro evidence that CD4+8+ thymocytes are at an intermediate stage of T cell maturation and TNC-R3.1 stromal cell clone induces the growth and differentiation of CD4+8+ thymocytes into CD4-8+ T cells.  相似文献   

16.
Cytokine production by mature and immature thymocytes.   总被引:4,自引:0,他引:4  
We have studied the ability of subpopulations of activated thymocytes to produce four cytokines (IL-2, IL-4, IFN-gamma and TNF-alpha) which are believed to play roles in T cell development. Supernatants from various thymocyte subsets activated with calcium ionophore and PMA were tested for these cytokines. All CD3hi thymocyte subsets (CD4+8-, CD4-8- and CD4-8+) produced high titers of these four cytokines except CD3+4-8+ thymocytes, which did not produce IL-4. In contrast, CD4+8+ thymocytes did not produce any detectable cytokines. CD3-4-8- thymocytes produced IL-2, IFN-gamma, and TNF-alpha (but not IL-4) when activated by calcium ionophore + PMA and IL-1. We then separated CD3-4-8- thymocytes into IL-2R+ and IL-2R-. CD3-4-8-IL-2R+ thymocytes only produced small amounts of IL-2 when activated with calcium ionophore + PMA + IL-1, whereas CD3-4-8-IL-2R- thymocytes did not require IL-1 to produce IL-2, IFN-gamma, and TNF-alpha. Finally, CD4-8+3- thymocytes (an immature population believed to be an intermediate between CD3-4-8- and CD4+8+ thymocytes) only produced marginally detectable levels of IL-2 upon stimulation with calcium ionophore, PMA, and the addition of IL-1 did not result in increased levels of cytokine production. These observations indicate discrete patterns of cytokine production by the subsets studied and suggest specific controls of cytokine gene expression during T cell development.  相似文献   

17.
IL-7 induced the proliferation of normal thymocytes and the effect was synergistically potentiated by a small dose of IL-2, which by itself hardly affected thymocyte proliferation. No synergism was observed between IL-7 and any one of the other lymphokines including IL-1, IL-3, and IL-4. The thymocyte culture stimulated with IL-7 and IL-2 consisted of single positive (CD4+CD8- and CD4-CD8+) and double negative (CD4-CD8-) populations, and double positive (CD4+CD8+) cells were completely deleted. Both single positive and double negative thymocytes expressed CD3, but only the former exhibited V beta 8 and V beta 6 in an expected proportion (approximately 30% in BALB/c mice) and the latter none at all. Immunoprecipitation of the cultured thymocytes by anti-TCR gamma antibody, on the other hand, revealed the presence of a TCR gamma chain. Taken together, these results indicated that the thymocyte cultured with IL-7 and IL-2 consisted of mature T cells bearing alpha beta or gamma delta TCR. Experiments using preselected thymocyte subpopulations indicated that double negative cells responded to both IL-7 and IL-2 with positive synergism when combined, while thymocytes enriched for single positive cells preferentially responded to IL-7 with little response to IL-2 and no detectable synergism. Double positive thymocytes showed no proliferation in response to IL-7 and IL-2. In contrast to single positive thymocytes, splenic T cells hardly responded to IL-7, although significant proliferation was induced in the presence of a low dose of IL-2. Thymocytes cultured with IL-7 and IL-2 showed little nonspecific cytotoxic activity, but responded to Con A or alloantigen, whereas those stimulated with a high dose of IL-2 alone exhibited potent cytotoxic activity. These results indicated that IL-7 was involved in the generation of immunocompetent T cells in the thymus in concert with IL-2.  相似文献   

18.
Th cell development inside the thymus can be defined on the basis of qualitative and quantitative CD4 and CD8 marker expression and follows the pathway of CD4-8- cells----CD4+8+ cells----CD4+8low cells----CD4+8- cells, which presumably emigrate to seed the periphery and serve as functionally mature Th cells. The various cell subpopulations at defined developmental stages were isolated by electronic cell sorting and examined for mitogen induced IL-2 production and cell proliferation responses. For TCR-alpha beta-bearing CD4+8+ and CD4+8low thymocytes that are actively engaged in positive and negative selection processes, negligible to low levels of IL-2 production and cell proliferation were observed in response to TCR:CD3 triggering or to the combined activation of protein kinase C and calcium mobilization mediated by PMA and ionomycin, respectively. For CD4-8- TCR-alpha beta early thymocytes that have not yet entered the selection process, PMA + ionomycin induced significant cell proliferation but little IL-2 production, in the absence of added IL-1. However, addition of IL-1 caused a powerful induction of IL-2 production that was accompanied by increased cell proliferation. Triggering of the TCR:CD3 complex had no effect on CD4-8-TCR(-)-alpha beta thymocytes as they do not express detectable levels of TCR-alpha beta. For thymus CD4+8- Th cells, the first cells that have completed TCR repertoire selection, vigorous proliferation was observed in response to TCR:CD3 triggering in the presence of added IL-2. However, the development of IL-2 responsiveness was not accompanied by high level IL-2 inducibility as TCR:CD3 triggering caused only marginal IL-2 production. In contrast, spleen CD4+8- T cells, the most "mature" representatives of Th cells, expressed high levels of IL-2 production as well as IL-2 responsiveness in response to TCR:CD3-mediated stimulation. The lack of anti-TCR-induced IL-2 production by thymus CD4+8- T cells was not due to an intrinsic defect as high levels of IL-2 production was induced by PMA + ionomycin. Possible reasons for the temporal acquisition and differential control of IL-2 inducibility and IL-2 responsiveness are discussed in the context of established Th cell development pathway.  相似文献   

19.
20.
Day-14 fetal CD4-, CD8- thymocytes showed a greater proliferative response to PMA + IL-4 than did adult double-negative thymocytes. In contrast, adult double-negative thymocytes were more responsive to PMA + IL-1 + IL-2 or to IL-1 + IL-2 alone. The adult double-negative thymocytes showed significantly greater proliferation than fetal thymocytes after stimulation via anti-CD3 or anti-Thy-1 in the presence or absence of interleukins (IL-1 + IL-2 or IL-4). Adult CD4-, CD8- thymocytes also exhibited greater calcium mobilization following anti-CD3 stimulation IL-2-dependent activation with anti-Thy-1 or IL-1 + IL-2 in the absence of PMA resulted in marked expansion of CD 3+, F23.1+, CD4-, CD8- thymocytes, a population absent in fetal thymocytes but constituting 4% of pre-cultured CD4-, CD8- adult thymocytes. IL-4 + PMA failed to expand this CD 3+ population. It is hypothesized that before expression of functional TCR, T cell development may be more dependent on activation pathways not using IL-2; after TCR expression, IL-2-dependent pathways, including Thy-1-mediated stimulation, become functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号