首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fed-batch is the dominating mode of operation in high-cell-density cultures of Saccharomyces cerevisae in processes such as the production of baker's yeast and recombinant proteins, where the high oxygen demand of these cultures makes its supply an important and difficult task. The aim of this work was to study the use of hyperbaric air for oxygen mass transfer improvement on S. cerevisiae fed-batch cultivation. The effects of increased air pressure up to 1.5 MPa on cell behavior were investigated. The effects of oxygen and carbon dioxide were dissociated from the effects of total pressure by the use of pure oxygen and gas mixtures enriched with CO(2). Fed-batch experiments were performed in a stirred tank reactor with a 600 mL stainless steel vessel. An exponential feeding profile at dilution rates up to 0.1 h(-)(1) was used in order to ensure a subcritical flux of substrate and, consequently, to prevent ethanol formation due to glucose excess. The ethanol production observed at atmospheric pressure was reduced by the bioreactor pressurization up to 1.0 MPa. The maximum biomass yield, 0.5 g g(-)(1) (cell mass produced per mass of glucose consumed) was attained whenever pressure was increased gradually through time. This demonstrates the adaptive behavior of the cells to the hyperbaric conditions. This work proved that hyperbaric air up to 1.0 MPa (0.2 MPa of oxygen partial pressure) could be applied to S. cerevisiae cultivation under low glucose flux. Above that critical oxygen partial pressure value, i.e., for oxygen pressures of 0.32 and 0.5 MPa, a drastic cell growth inhibition and viability loss were observed. The increase of carbon dioxide partial pressure in the gas mixture up to 48 kPa slightly decreased the overall cell mass yield but had negligible effects on cell viability.  相似文献   

2.
Multi-wavelength fluorescence spectroscopy was evaluated as a tool for on-line monitoring of recombinant Escherichia coli cultivations expressing human basic fibroblast growth factor (hFGF-2). The data sets for the various combinations of the excitation and emission spectra from batch cultivations were analyzed using principal component analysis. Chemometric models (the partial least squares method) were developed for correlating the fluorescence data and the experimentally measured variables such as the biomass and glucose concentrations as well as the carbon dioxide production rate. Excellent correlations were obtained for these variables for the calibration cultivations. The predictability of these models was further tested in batch and fed-batch cultivations. The batch cultivations were well predicted by the PLS models for biomass, glucose concentrations and carbon dioxide production rate (RMSEPs were respectively 5%, 7%, 9%). However, when tested for biomass concentrations in fed-batch cultivations (with final biomass three times higher than the highest calibration data) the models had good predictability at high growth rates (RMSEPs were 3% and 4%, respectively for uninduced and induced fed-batch cultivations), which was as good as for the batch cultivations used for developing the models (RMSEPs were 3% and 5%, respectively for uninduced and induced batch cultivations). The fed-batch cultivations performed at low growth rates exhibited much higher fluorescence for fluorophores such as flavin and NAD(P)H as compared to fed-batch cultivations at high growth rate. Therefore, the PLS models tended to over-predict the biomass concentrations at low growth rates. Obviously the cells changed their concentration of biogenic fluorophores depending on the growth rate. Although multi-wavelength fluorescence spectroscopy is a valuable tool for on-line monitoring of bioprocess, care must be taken to re-calibrate the PLS models at different growth rates to improve the accuracy of predictions.  相似文献   

3.
The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.  相似文献   

4.
The influence of the oxygen supply on the growth, acetic acid and ethanol production by Brettanomyces bruxellensis in a glucose medium was investigated with different air flow rates in the range 0-300 l h(-1 ) x (0-0.5 vvm). This study shows that growth of this yeast is stimulated by moderate aeration. The optimal oxygen supply for cellular synthesis was an oxygen transfer rate (OTR) of 43 mg O(2) l(-1) x h(-1). In this case, there was an air flow rate of 60 l h(-1) (0.1 vvm). Above this value, the maximum biomass concentration decreased. Ethanol and acetic acid production was also dependent on the level of aeration: the higher the oxygen supply, the greater the acetic acid production and the lower the ethanol production. At the highest aeration rates, we observed a strong inhibition of the ethanol yield. Over 180 l h(-1) x (0.3 vvm, OTR =105 mg O(2) l(-1) x h(-1)), glucose consumption was inhibited and a high concentration of acetic acid (6.0 g x l(-1)) was produced. The ratio of "ethanol + acetic acid" produced per mole of consumed glucose using carbon balance calculations was analyzed. It was shown that this ratio remained constant in all cases. This makes it possible to establish a stoichiometric equation between oxygen supply and metabolite production.  相似文献   

5.
Paracoccus denitrificans and Bacillus licheniformis were grown in a carbon- and energy source-limited recycling fermentor with 100% biomass feedback. Experimental data for biomass accumulation and product formation as well as rates of carbon dioxide evolution and oxygen consumption were used in a parameter optimization procedure. This procedure was applied on a model which describes biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of the biomass growth rate. The fitting procedure yielded two growth domains for P. denitrificans. In the first domain the values for the maximal growth yield and the maintenance coefficient were identical to those found in a series of chemostat experiments. The second domain could be described best with linear biomass increase, which is equal to a constant growth yield. Experimental data of a protease producing B. licheniformis also yielded two growth domains via the fitting procedure. Again, in the first domain, maximal growth yield and maintenance requirements were not significantly different from those derived from a series of chemostat experiments. Domain 2 behaviour was different from that observed with P. denitrificans. Product formation halts and more glucose becomes available for biomass formation, and consequently the specific growth rate increases in the shift from domain 1 to 2. It is concluded that for many industrial production processes, it is important to select organisms on the basis of a low maintenance coefficient and a high basic production of the desired product. It seems less important that the maximal production becomes optimized, which is the basis of most selection procedures.  相似文献   

6.
Summary A system for the continuous cultivation of plant cells has been developed, based on a commercially available 3–1 turbine-stirred fermentor. A special device was constructed to provide for homogeneous effluent from the culture at low dilution rates. Two steady states with Catharanthus roseus cells growing under glucose limitation are described with respect to biomass yield on the carbon and energy source glucose, specific oxygen consumption, specific carbon dioxide production and (by)product formation. From a carbon balance for each steady state it is shown that the flow of carbon to the culture (as glucose) practically equalled the flow of carbon from the culture (as biomass, carbon dioxide and (by)product). Biomass yields on glucose were 0.31 g/g and 0.35 g/g at dilution rates of 0.0060 l/h and 0.0081 l/h respectively. The striking difference between the obtained yield coefficients and biomass yield commonly found for batch-cultured plant cells is discussed.  相似文献   

7.
The amount of Vitreoscilla hemoglobin (VHb) expression was modulated over a broad range with an isopropyl-beta-D-thiogalactopyranoside- (IPTG-) inducible plasmid, and the consequences on microaerobic Escherichia coli physiology were examined in glucose fed-batch cultivations. The effect of IPTG induction on growth under oxygen-limited conditions was most visible during late fed-batch phase where the final cell density increased initially linearly with increasing VHb concentrations, ultimately saturating at a 2.7-fold increase over the VHb-negative (Vhb(-)) control. During the same growth phase, the specific excretions of fermentation by-products, acetate, ethanol, formate, lactate, and succinate from the culture expressing the highest amount of VHb were reduced by 25%, 49%, 68%, 72%, and 50%, respectively, relative to the VHb(-) control. During the exponential growth phase, VHb exerted a positive but smaller control on growth rate, growth yield, and respiration. Varying the amount of VHb from 0 to 3.8 mumol/g dry cell weight (DCW) increased the specific growth rate, the growth yield, and the oxygen consumption rate by 33%, 35%, and 60%, respectively. Increasing VHb concentration to 3.8 mumol/g DCW suppressed the rate of carbon dioxide evolution in the exponential phase by 30%. A metabolic flux distribution analysis incorporating data from these cultivations discloses that VHb(+) cells direct a larger fraction of glucose toward the pentose phosphate pathway and a smaller fraction of carbon through the tricarboxylic acid cycle from acetyl coenzyme A. The overall nicotinamide adenine dinucleotide [NAD(P)H] flux balance indicates that VHb-expressing cells generate a net NADH flux by the NADH/NADPH transhydrogenase while the VHb(-) cells yield a net NADPH flux under the same growth conditions. Flux distribution analysis also reveals that VHb(+) cells have a smaller adenosine triphosphate (ATP) synthesis rate from substrate-level phosphorylation but a larger overall ATP production rate under microaerobic conditions. The thermodynamic efficiency of growth, based on reducing equivalents generated per unit of biomass produced, is greater for VHb(+) cells. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Although glucose is an inexpensive substrate widely used as a carbon source in Escherichia coli recombinant fermentation technology, 10-30% of the carbon supply is wasted by excreting acetate. In addition to the loss of carbon source, the excretion of a weak acid may result in increased energetic demands and hence a decreased yield. Because glucose can enter the cell via several transport systems, isogenic strains defective in one or two of these transport systems were constructed. The effects of changes in the glucose uptake capacity on the in vivo flux distribution to a desired end product (beta-galactosidase) and to acetate were studied. The lack of one of the components (IICB(Glc) protein) of the glucose-phosphoenolpyruvate phosphotransferase system (Glc-PTS) reduced the growth rate significantly. The maintenance of a low-copy plasmid in this strain resulted in further arrest of the growth rate. However, beta-galactosidase production had no effect on growth rate. This strain directed more carbon into biomass and carbon dioxide, and less into acetate. Beta-galactosidase was produced in amounts not significantly different from the wild-type strain from half the amount of glucose. An explanation for the experimental results is given, making use of published results on metabolic regulation.  相似文献   

9.
Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass-energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass-energy balances in the optimal operation of continuous single-cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.  相似文献   

10.
The methylotrophic yeast Pichia pastoris is a powerful system for production of recombinant proteins, showing high ability to secrete properly folded proteins. A major plus is the strong AOX1 promoter highly induced by methanol. During growth on methanol, however, oxygen readily becomes limiting. In oxygen-limited cultivations of recombinant Pichia pastoris, the methanol concentration had a strong impact on the production of a single-chain antibody fragment (scFv). High methanol concentrations were required to compensate the lack of oxygen and fully induce recombinant protein production, at the same time reducing gratuitous biomass formation due to a lower biomass yield. Product concentrations of 60, 150, and 350 mg/L were obtained with methanol concentrations of 0.3, 1, and 3% (v/v). Moreover, accumulation of a putative product fragment that cannot be removed during affinity purification was prevented at high methanol concentrations. Cell vitality after 100 h was maintained above 98% and 96% of the culture with 0.3% and 3% methanol, respectively. In cultivations supplemented with oxygen, in contrast, methanol concentration between 0.3% and 3% did not influence the product yield of 300-400 mg/L. Thus, efficient recombinant protein production under oxygen-limitation seems to require high methanol concentrations, enabling product concentration as high as otherwise obtained only with expensive supply of pure oxygen.  相似文献   

11.
To model the physiological potential of marine heterotrophic bacteria, their role in the food web, and in the biogeochemical carbon cycle, we need to know their growth efficiency response within a matrix of different temperatures and degrees of organic substrate limitation. In this work, we present one part of this matrix, the carbon growth efficiencies of marine bacteria under different temperatures and nonlimiting organic and inorganic substrate supply. We ran aerobic turbidostats with glucose enriched seawater, inoculated with natural populations of heterotrophic marine bacteria at 10, 14, 18, 22, and 26°C. The average cell-specific growth rates increased with temperature from 1.17 to 2.6 h−1. At steady-state total CO2 production, biomass production [particulate organic carbon (POC) and nitrogen (PON)], and viruslike particle abundance was measured. CO2 production and specific growth rate increased with increasing temperature. Bacterial carbon growth efficiency (BCGE), the particulate carbon produced per dissolved carbon utilized, varied between 0.12 and 0.70. Maximum BCGE values and decreased specific respiration rates occurred at higher temperatures (22 and 26°C) and growth rates. This trend was largely attributable to an increase in POC per cell abundance; when the BCGE was recalculated, parameterizing the biomass as the product of cell concentration and a constant cellular carbon content, the opposite trend was observed.  相似文献   

12.
Candida lipolytica was cultured batchwise using n-hexadecane as the main carbon source. Biomass production, n-hexadecane consumption, oxygen consumption, and carbon dioxide evolution were measured to follow the fermentation. The consistency of the measured data was examined using integrated and instantaneous available electron and carbon balances. Values of the “true” growth yield, ηmax, and maintenance coefficient, me were estimated using three different sets of data (biomass and n-hexadecane, oxygen and biomass, and CO2 and biomass), and the results were compared with estimates obtained from literature data. Hysteresis patterns were observed in plots of specific rates of oxygen consumption and carbon dioxide evolution versus specific growth rate.  相似文献   

13.
Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass–energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass–energy balances in the optimal operation of continuous single-cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.  相似文献   

14.
Substrate and energy costs of the production of exocellular enzymes from glucose and citrate by B. Iicheniformis S1684 as well as molar growth yields corrected for these costs of product formation were calculated using data from chemostat experiments. The calculations showed that 1.46-1.73 mol glucose and 2.31-2.77 mol citrate are needed for formation and excretion of 1 mol protein. Consequently, the values of the maximal product yield from substrate (Y(psm') g/mol) are 80 < Y(psm) < 95 when product is formed from glucose and 50 < Y(psm) < 60 when product is formed from citrate. The higher substrate costs for product formation from citrate are due to a higher level of CO(2) production during protein formation and a higher substrate requirement for the energy supply of product formation and excretion than when product is formed from glucose. The theoretical ATP requirement for protein synthesis could be determined reasonably well, but the energy costs of protein excretion could not be determined exactly. The energy costs of protein formation are higher than those of biomass formation or protein excretion. Molar growth yields corrected for the substrate costs of product formation were high, indicating a high efficiency of growth.Growth and production parameters were determined as well from experimental data of recycling fermentor experiments using a parameter optimization procedure based on a mathematical model describing biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of biomass growth rate. The fitting procedure yielded two growth and production domains during glucose limitation. In the first domain the values for the maximal growth yield and maintenance coefficient were in agreement with those found in chemostat experiments at corresponding values of Y(spm). Domain 2 could be described best with linear growth and product formation. In domain 2 the rate of product formation decreased and more substrate became available for biomass formation. As a consequence the specific growth rate increased in the shift from domain 1 to 2. Domain 2 behavior most probably is caused by the rel-status of B. Iicheniformis S1684.  相似文献   

15.
The objective of this study was to quantify the effect of algal biomass concentration on the rheology of the algal culture broth. Batch cultivations of Chlorella minutissima were carried out with air and carbon dioxide in a stirred tank bioreactor with a working volume of 1.8 L. The apparent viscosity of the culture broth was significantly affected by the cell mass concentrations in the bioreactor. Culture broth containing 50 g/L cell mass from air fed was found to exhibit an apparent viscosity of 1.52 mPa.s. The apparent viscosity of the carbon‐dioxide‐fed cultivations was found to increase by 20% at a shear rate of 100 s?1. The flow behavior of the system was adequately described by the Herschel–Bulkley model with a small yield stress.  相似文献   

16.
The impact of encapsulation on the anaerobic growth pattern of S. cerevisiae CBS 8066 in a defined synthetic medium over 20 consecutive batch cultivations was investigated. In this period, the ethanol yield increased from 0.43 to 0.46 g/g, while the biomass and glycerol yields decreased by 58 and 23%, respectively. The growth rate of the encapsulated cells in the first batch was 0.13 h−1, but decreased gradually to 0.01 h−1 within the 20 sequential batch cultivations. Total RNA content of these yeast cells decreased by 39% from 90.3 to 55 mg/g, while the total protein content decreased by 24% from 460 to 350 mg/g. On the other hand, the stored carbohydrates, that is, glycogen and trehalose content, increased by factors of 4.5 and 4 within 20 batch cultivations, respectively. Higher biomass concentrations inside capsules led to a lower glucose diffusion rate through the membrane, and volumetric mass transfer coefficient for glucose was drastically decreased from 6.28 to 1.24 (cm3/min) by continuing the experiments. Most of the encapsulated yeast existed in the form of single and non-budding cells after long-term application.  相似文献   

17.
An empirical model was applied to describe the growth related formation of scleroglucan in batchwise cultivation of Sclerotium rolfsii. In this case, the level of oxygen supply controls the carbon flux into glucan, biomass, and CO2 evolution and therefore determines the yield coefficients YGlucan/BDM and YBDM/O2. It was observed that scleroglucan formation is enhanced under microaerobic conditions. However, as the empirical model and data of actual batch cultivations show, different maxima exist for product end concentration [g/l] and volumetric productivity [g/ld] depending on the total oxygen uptake during cultivation. A sufficient bulk mixing of the highly viscous culture suspension becomes particularly important during large-scale cultivations. In addition, the scleroglucan production process proved to be shear sensitive. A correlation between the attainable molecular weight of the glucan and the stirrer tip velocity in bioreactors of different sizes is presented. For all these reasons, a scale-up of this process is very complex. Large-scale cultivations under microaerobic conditions, aiming for maximum product end concentration, were slowed down by poor bulk mixing leading to a lower carbon flux into glucan formation. On the other hand, a scale-up designed for maximum volumetric productivity using high oxygen supply was successfully conducted up to a reactor volume of 1.500 l. To minimize the loss in product quality (molecular weight of the glucan) due to high stirrer tip velocities, a mixing concept was developed employing reduced agitation combined with maximum aeration to secure a sufficient axial bulk mixing in the reactor.  相似文献   

18.
The effect of oxygen availability on the metabolism of Enterobacter aerogenes NCIMB 10102 was studied through batch fermentations of glucose performed increasing the specific oxygen uptake rate up to 72.7 mmol(O2) C-mol(DW) (-1) x h(-1). The final concentrations of fermentation products of this biosystem (2,3-butanediol, hydrogen, acetoin, formate, acetate, carbon dioxide, ethanol, lactate, succinate, and biomass) were utilized to check the use of simple carbon mass and reduction degree balances for the study of microbial energetics even in batch cultivations.  相似文献   

19.
The influence of glucose oscillations on cell growth and product formation of a recombinant Escherichia coli culture producing a heterologous alpha-glucosidase was studied in fed-batch cultures in a laboratory bioreactor. Glucose oscillations were created by an on/off-feeding mode in either fast cycles (1 min) or slow cycles (4 min) and compared to a process with constant glucose addition. The study indicates that glucose oscillations influence the product stability and the overgrowth of plasmid-free cells if such cultures are not performed under continuous pressure for selection of plasmid-containing cells. Although the glucose uptake capacity decreased after induction of the recombinant alpha-glucosidase in all cultures performed, the up-growth of plasmid-free cells during the production phase was strongly inhibited by fast oscillations. In contrast, plasmid-free cells grew up when constant feeding or slow cycles were applied. Our data suggest that the various feed protocols effect the specific carbon dioxide formation rate differently, with the highest production of carbon dioxide in the cultivations with fast cycles. In connection to product formation the initial alpha-glucosidase accumulation was the same in all cultures, but the stability of the product was significantly lower in the cultivation with slow cycles. Our results from laboratory experiments are discussed in relation to the mixing situation in large-scale bioreactors.  相似文献   

20.
The effect was studied of oxygen supply on the changes in total and specific rate of oxygen consumption by the cells, oxygen transfer rate, saturation concentrations of dissolved oxygen and the yields of batch and continuous cultivations. Experiments were done on the microorganismKlebsiella aerogenes CCM 2318 growing on synthetic glucose medium. Continuous cultivations were carried out at dilution rates of 0.96 and 0.178 h−1. The rate of oxygen transfer was determined by the sulphite method and the coefficient KLa was assessed using the dynamic method with a correction for changes in the saturations of dissolved oxygen. A lowered oxygen supply in batch cultivations caused deformations in the course of cell respiration. Comparison of results of batch and continuous cultivations showed that the highest yields Yx/s and Yx/o are attained at low dilution rates without oxygen limitation. Batch cultivations, on the other hand, exhibit the lowest yields and the highest cell respiration levels. In both types of cultivations, a respiration peak was ascertained under the conditions of growth limitation by oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号