首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Study on the mechanism of hexokinase isozyme II adsorption on mitochondrial membranes in the presence of 10 mM MgCl2 demonstrated that 0.16% of the total proteins of the soluble fraction and the total hexokinase pool are capable of reversible binding to the membrane. The plot for the dependence of the degree of enzyme adsorption on Mg2+ concentration is hyperbolic. Under these conditions, hexokinase competes favourably for the binding sites with lactate dehydrogenase and creatine kinase. Analysis of the adsorption capacity of natural and artificial phospholipid membranes showed that hexokinase isozyme II is adsorbed in much the same way on inner and outer mitochondrial membranes as well as on a mixture of membranes obtained from various sources and on lecithin liposomes. The adsorption properties of hexokinase isozyme II and of its functional analog--isozyme I--point to marked differences in the mechanism of their interaction with the membrane. In contrast with isozyme I, isozyme II of hexokinase undergoes kinetic alterations. Besides, it was found that mild autolysis of isozyme II is accompanied by a loss of the enzyme ability to bind to mitochondrial membranes. The data obtained suggest that the specificity of hexokinase isozyme II adsorption depends on the structural peculiarities of the protein but not on those of the mitochondrial membrane.  相似文献   

2.
The possible presence of hexokinase in basal lateral membranes from rat kidney proximal tubules was investigated. Basal lateral membranes were obtained from homogenates of rat kidney cortex by differential centrifugation and free flow electrophoresis. They were further purified by density gradient centrifugation. Hexokinase activity was measured as the phosphorylation of D-[U14C]glucose. Throughout the purification of the membranes, the specific activity of hexokinase decreased while that of (Na+ + K+)-ATPase increased. Hexokinase activity in all fractions could be quantitatively accounted for in terms of cytosolic and mitochondrial enzyme contributions. It is concluded that there is no hexokinase activity in basal lateral membranes from rat kidney.  相似文献   

3.
Mitochondrial hexokinase from small-intestinal mucosa and brain   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The submitochondrial localization of hexokinase activity in preparations of mitochondria from the small intestine of the guinea pig was studied by conventional methods. 2. Hexokinase activity in this tissue was predominantly associated with the outer mitochondrial membrane. 3. The inactivation of mitochondrial enzymes by trypsin in iso-osmotic and hypo-osmotic conditions was also used to determine the submitochondrial localization of hexokinase activity. 4. Hexokinase activity was found to be on the outside of the outer mitochondrial membrane. 5. It was shown that both type I and type II hexokinase activities are bound to the outside of the outer mitochondrial membrane. The types are present in the same ratio as that in which they occur in the cytosol of the cell. 6. Mitochondrial hexokinase from the small intestine did not show the latency phenomenon demonstrated by mitochondrial hexokinase from brain when subjected to a variety of treatments. However, hexokinase activity was solubilized from preparations of mitochondria from the small intestine by the same treatments as for mitochondrial hexokinase from brain. 7. The submitochondrial distribution of hexokinase activity in mitochondrial preparations from rat brain was determined by the trypsin inactivation method. 8. Hexokinase activity in preparations of mitochondria from rat brain was found on the outside of the outer membrane, between the mitochondrial membranes, and within the inner mitochondrial membrane. 9. Hexokinase from rat brain showed latency properties irrespective of its submitochondrial location.  相似文献   

4.
During incubation of a constant volume of rat liver cytosol with an increasing quantity of mitochondrial protein in the presence of 3.3 mM MgCl2, the binding of nucleoside diphosphate kinase (NDPK) from the cytosol to mitochondrial membranes is described by a saturation curve. The highest bound NDPK activity accounts for less than 9% of the added activity. Analysis of the results suggests that only one NDPK isozyme is bound to the membranes. Western blotting showed it to be NDPK α, a homolog of human NDPK-B. Substrates of NDPK, hexokinase, and glycerol kinase, as well as N,N’-dicyclohexylcarbodiimide and palmitate, did not influence the association of NDPK with mitochondrial membranes. We conclude that the sites of NDPK binding to the outer mitochondrial membrane are not identical to those of hexokinase and glycerol kinase.  相似文献   

5.
Glucose catabolism in brain. Intracellular localization of hexokinase   总被引:1,自引:0,他引:1  
A major energy source in brain is glucose, which is committed to metabolism by hexokinase (Type I isozyme), an enzyme usually considered to be bound to the outer mitochondrial membrane. In this study, the subcellular location of hexokinase in brain has been rigorously investigated. Mitochondrial fractions containing hexokinase (greater than 500 milliunits/mg protein) were prepared by two different procedures, and then subjected to density gradient centrifugation before and after loading with barium phosphate, a technique designed to increase the density of the mitochondria. The gradient distribution patterns of both unloaded and loaded preparations show that brain hexokinase does not distribute exclusively with mitochondrial marker enzymes. This is particularly evident in the loaded preparations where there is a clear distinction between the peak activities of hexokinase and mitochondrial markers. The same observation was made when the mitochondrial fraction of either untreated or barium phosphate-loaded mitochondria was subjected to titration with digitonin. In fact, at concentrations of digitonin, which almost completely solubilize marker enzymes for both the inner and outer mitochondrial membranes, a significant fraction of the total hexokinase remains particulate bound. Electron microscopy confirmed that particulate material is still present under these conditions. Significantly, hexokinase is released from particulate material only at high concentrations of digitonin which solubilize the associated microsomal marker NADPH-cytochrome c reductase. Glucose 6-phosphate, which is known to release hexokinase from the brain "mitochondrial fraction" also releases hexokinase from this unidentified particulate component. These results on brain, a normal glucose utilizing tissue, differ from those obtained previously on highly glycolytic tumor cells where identical subfractionation procedures revealed a strictly outer mitochondrial membrane location for particulate hexokinase (Parry, D. M., and Pedersen, P. L. (1983) J. Biol. Chem. 258, 10904-10912). It is concluded that in brain, hexokinase has a greater propensity to localize at nonmitochondrial receptor sites than to those known to be associated with the outer mitochondrial membrane.  相似文献   

6.
Hexokinase in mammalian brain is particulate and usually considered to be bound to the outer mitochondrial membrane. Investigation of rabbit brain mitochondria prepared either by differential centrifugation and discontinuous density gradient centrifugation has provided evidence that this particulate fraction also contains endoplasmic vesicles and synaptosomes. Solubilization of the bound hexokinase by different combinations of detergents and metabolites has proved the existence of different hexokinase binding sites. Electron microscopic examination of hexokinase location by immuno-gold labelling techniques confirmed, that hexokinase is indeed predominantly bound to mitochondria but that a significant proportion is also bound to non-mitochondrial membranes. Attempts to quantify this distribution were unsuccessful since different figures were obtained using anti-hexokinase IgG affinity purified on immobilized native or denatured hexokinase. Binding studies of the purified rabbit brain mitochondrial hexokinase to rabbit liver mitochondria and microsomes confirmed that in addition to a binding site on mitochondria there is another binding site on microsomes. The N-terminal sequence of hexokinase has been shown to be important for mitochondria binding and also for microsome binding. These results suggest that the intracellular localization of hexokinase in rabbit brain is not exclusively mitochondrial and that the metabolic role of this enzyme should be reconsidered by including a binding site on the endoplasmic reticulum.  相似文献   

7.
The involvement of the mitochondrial bound hexokinase in aerobic glycolysis was investigated in two subpopulations of the HT 29 human colon cancer cell line: a poorly differentiated one with high aerobic lactate production (referred as undifferentiated or standard cells), and an enterocyte-like differentiated one with lower lactate production (referred as differentiated or Glc- cells). After mild digitonin treatment, 85% of the total cellular hexokinase activity remained in the particulate fraction in both cell types. In both cases mitochondria appeared to be tightly coupled but the Glc- cells exhibited a significantly higher oxidation rate in the presence of glucose. Electron microscopy of freeze-fractured cells revealed the absence of contacts between the two limiting mitochondrial membranes in the highly glycolytic standard cells, whereas the contacts were present in the Glc- cells. Furthermore, we investigated the functional relationship between bound hexokinase (as hexokinase-porin complex) and the inner compartment of mitochondria isolated from standard and Glc- HT 29 cells. In contrast to the differentiated cells the hexokinase in undifferentiated standard cells was not functionally coupled to the oxidative phosphorylation. This suggests that the high rate of lactate formation in neoplastic cells is not caused by an increase of particulate hexokinase activity but rather by a disregulation of the hexokinase-porin complex caused by the absence of contact sites between the two mitochondrial membranes. In agreement with this interpretation, the hexokinase-porin complex could be completely removed by digitonin treatment in standard HT 29 cells, while this was not possible in mitochondria from Glc- cells.  相似文献   

8.
PROPERTIES OF MEMBRANE-BOUND HEXOKINASE IN RAT BRAIN   总被引:2,自引:0,他引:2  
Abstract— —-(1) The total hexokinase activity present in the mitochondrial fraction can be solubilized completely by incubation with salt and Triton X-100. This activity cannot be entirely released by washing with sucrose or by freezing and thawing.
(2) A part of the particle bound hexokinase exists in a latent form. The latent form is apparent after incubation with high salt concentrations, detergents or by freezing and thawing.
(3) Solubilization of membrane bound hexokinase is pH-dependent. Incubation in salt solutions increases the specific activity ten-fold. The salt concentration and pH are con-current. At pH 7.0 part of the hexokinase is solubilized. The lower the pH the less salt is required to release the same amount of activity.
(4) Triton X-100 solubilizes particle-bound hexokinase, but to a less extent than salts. The activation of hexokinase is greater with Triton X-100 than with salt.
(5) The possible nature of the bonds between hexokinase and mitochondrial membranes is discussed.  相似文献   

9.
It was found that in the presence of Mg2+ (pH 7.5) rat skeletal muscle hexokinase isozyme II is firmly adsorbed on mitochondrial and artificial phospholipid membranes (lecithin liposomes). In both cases the adsorption isotherm has similar quantitative and qualitative characteristics, which points to the absence of specific binding sites on the membranes. Under these conditions, immobilization of hexokinase on various membranes is concomitant with similar changes in the enzyme stability upon storage as well as with the pH-dependence of the enzyme activity. It was demonstrated that the bound hexokinase form has a greater value of V, an increased affinity for glucose and a decreased sensitivity to the inhibitory action of glucose-6-phosphate as compared to the free form. Besides, this form is in a greater degree subjected to the inhibitory influence of ADP with respect to glucose. In this case, the enzyme affinity for ATP and the Ki value for ADP with respect to ATP is practically the same both for the free and membrane-bound forms. The data obtained suggest that the phospholipid component of mitochondrial membranes participates in the enzyme binding in the presence of Mg2+. It was assumed that the model system used in the present study, i.e., hexokinase-Mg2+-liposomes, may be successfully used for the analysis of an adsorption mechanism of regulation of hexokinase activity in the cell.  相似文献   

10.
Voltage-dependent anion-selective channel proteins (VDACs) are pore-forming proteins found in the outer mitochondrial membrane of all eukaryotes and in brain postsynaptic membranes. VDACs regulate anion fluxes of a series of metabolites including ATP, thus regulating mitochondrial metabolic functions. Hexokinase binds to porin. The mitochondrially bound hexokinase can greatly increase the rate of aerobic glycolysis. The activities of hexokinase and protein levels of mitochondrial porin were determined in brains of hypothyroid rabbits and in hypothyroid rabbits administered with thyroxine. Proteins were separated by electrophoresis, and the proteins of interest were quantified. Western blotting analysis revealed a significant decrease (approximately 50%) in the relative amount of porin in the hypothyroid compared with euthyroid rabbits. The changes in the developmental pattern of hexokinase activity in the brain of hypothyroid rabbits and the effect of T(4) on this enzyme activity have been investigated. Hypothyroid rabbits showed lower activity than their corresponding age-matched normal neonates. Administration of thyroxine to the hypothyroid neonates at birth abolished the effects of methimazole [1-methyl-2-mercaptoimidazole (MMI)]. These findings apparently indicate that the synthesis of the pore-forming protein and the hexokinase enzymes are under thyroid control during the fetal and the early postnatal period.  相似文献   

11.
Brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) binds selectively to the outer membrane of rat liver mitochondria but not to inner mitochondrial or microsomal membranes nor to the plasma membrane of human erythrocytes. A protein having subunit molecular weight of 31,000, determined by sodium dodecyl sulfate-gel electrophoresis, has been highly purified from the outer mitochondrial membrane by repetitive solubilization with octyl-beta-D-glucopyranoside followed by reconstitution into membranous vesicles when the detergent is removed by dialysis. When incorporated into lipid vesicles, the protein confers the ability to bind brain hexokinase in a Glc-6-P-sensitive manner as is seen with the intact outer mitochondrial membrane. Hexokinase binding ability and the 31,000 subunit molecular weight protein co-sediment during sucrose density gradient centrifugation. Both hexokinase binding ability and the 31,000 subunit molecular weight protein are resistant to protease treatment of the intact outer mitochondrial membrane while other membrane proteins are extensively degraded. It is concluded that this protein, designated the hexokinase-binding protein (HBP), is an integral membrane protein responsible for the selective binding of hexokinase by the outer mitochondrial membrane.  相似文献   

12.
Hexokinase-binding protein and mitochondrial porin were isolated from rat liver mitochondria by different procedures. It was found that the hexokinase-binding protein made lipid vesicles permeable to ADP and formed asymmetric pores in lipid bilayer membranes identical to those obtained from the mitochondrial porin. On the other hand, the mitochondrial porin confers the ability to bind hexokinase. In addition, evidence is presented that both hexokinase-binding protein and mitochondrial porin bind glycerol kinase.  相似文献   

13.
The regulation of mitochondrial-bound hexokinases in the liver   总被引:1,自引:0,他引:1  
A functional coupling between bound hexokinase and the inner mitochondrial compartment has been shown. It is based structurally on the binding of hexokinase to a pore protein which is present in zones of contact between the two boundary membranes. The latter was observed by electron microscopic localization of antiporin and hexokinase at the mitochondrial surface. The four isoenzymes present in liver differ considerably in their activity after binding to the mitochondrial surface. This was found by binding studies using the four isoenzymes isolated from the supernatant. Isoenzyme IV did not bind at all. Isoenzymes I-III did bind and became activated: I, 5.9-fold; II, 39-fold; and III, 1.3-fold. These results suggest that the in vivo activity of hexokinase in the mitochondrial fraction is much larger than so far observed. Furthermore the binding of isoenzymes was differently affected by metabolites. Glucose-6-phosphate exclusively desorbed isoenzyme I from the mitochondrial membrane whereas free fatty acids predominantly liberated isoenzymes II and III. A reciprocal change of the levels of free fatty acids and glucose 6-phosphate in livers of starved rats therefore, can explain why exclusively mitochondrial-bound isoenzymes II and III decreased 10-fold while at the same time isoenzyme I increased.  相似文献   

14.
Brief incubation of isolated rat hepatocytes in the presence of the oleate-bovine serum albumin complex resulted in a release to the cytosol of a portion of hexokinase (EC 2.7.1.1) normally bound to intracellular membranes. This was correlated with an increase of the negative surface potential of the outer mitochondrial membrane, as measured in situ by determining changes of Km of monoamine oxidase (EC 1.4.3.4). It is suggested that non-esterified fatty acids produce a partial release of bound hexokinase in the liver cell by changing the surface charge of intracellular membranes.  相似文献   

15.
Regulation of hexokinase binding to VDAC   总被引:5,自引:1,他引:4  
Hexokinase isoforms I and II bind to mitochondrial outer membranes in large part by interacting with the outer membrane voltage-dependent anion channel (VDAC). This interaction results in a shift in the susceptibility of mitochondria to pro-apoptotic signals that are mediated through Bcl2-family proteins. The upregulation of hexokinase II expression in tumor cells is thought to provide both a metabolic benefit and an apoptosis suppressive capacity that gives the cell a growth advantage and increases its resistance to chemotherapy. However, the mechanisms responsible for the anti-apoptotic effect of hexokinase binding and its regulation remain poorly understood. We hypothesize that hexokinase competes with Bcl2 family proteins for binding to VDAC to influence the balance of pro-and anti-apoptotic proteins that control outer membrane permeabilization. Hexokinase binding to VDAC is regulated by protein kinases, notably glycogen synthase kinase (GSK)-3β and protein kinase C (PKC)-ɛ. In addition, there is evidence that the cholesterol content of the mitochondrial membranes may contribute to the regulation of hexokinase binding. At the same time, VDAC associated proteins are critically involved in the regulation of cholesterol uptake. A better characterization of these regulatory processes is required to elucidate the role of hexokinases in normal tissue function and to apply these insights for optimizing cancer treatment.  相似文献   

16.
Abstract: While studying the delivery of cytoplasmic proteins to the presynaptic terminals of CNS neurons, we discovered unique characteristics of one protein (p118) conveyed in slow component b (SCb) of axonal transport, the large group of proteins representing the cytoplasmic matrix. Alone among the SCb group, p118 coisolated with the synaptic junctional complex on biochemical fractionation of the radiolabeled synaptic regions. Purification and amino acid sequencing of this protein revealed it is most likely the guinea pig form of type I (brain) hexokinase (ATP: d -hexose 6-phosphotransferase, EC 2.7.1.1). Further biochemical treatments were consistent with this identity. The majority of type I brain hexokinase has been thought to be associated primarily with membranes, in particular the mitochondrial outer membrane. We found that the majority of type I hexokinase is transported toward the terminals at a rate at least 10 times slower than that exhibited by the maximal or average rate of mitochondria. This suggests that, in the axon, the enzyme exhibits transient or dynamic interactions with mitochondria that are moving more rapidly. It is not clear whether hexokinase binds exclusively to mitochondria, or also exhibits association with nonmitochondrial membranes. The unexpected enrichment of hexokinase during synaptic junctional complex purification may result from its strong association with the presynaptic membrane portion of the synapse.  相似文献   

17.
The activities of mitochondrial hexokinase and adenylate kinase have been measured in various osmotic conditions. Sucrose, potassium chloride and ammonium acetate were used as solutes. The total hexokinase activity of mitochondrial suspensions increased steadily with decreasing osmolarity of the sucrose or salt solutions. The hexokinase activity of mitochondrial suspensions in water was 93 per cent of that measured in the presence of Triton X-100.The increase in hexokinase activity was irreversible even after very short exposure (90 s) to hypo-osmotic conditions. Total adenylate kinase activity was not affected by osmotic conditions. Adenylate kinase activity increased hyperbolically in supernatants prepared from mitochondrial suspensions with decreasing osmolarity of the sucrose or salt solutions. Besides monitoring adenylate kinase leakage as a measure of outer mitochondrial membrane disruption, mitochondrial swelling was followed by measurement of the turbidity of mitochondrial suspensions at 520 nm. The data has been interpreted in terms of binding of some hexokinase to the inner mitochondrial membrane.  相似文献   

18.
A comparative study of Mg2+ and Ca2+ effects on the ability of rat skeletal muscle hexokinase isozyme II to bind mitochondrial membranes isolated from the same source was carried out. It was found that the binding ability of the enzyme increases in a similar way in the presence of equimolar amounts of both cations. The dependence of binding ability on cation concentration is hyperbolic, which points to the existence of specific and equivalent metal binding sites during hexokinase attachment to the membranes. Substitution of Ca2+ for Mg2+ does not influence the tightness of the enzyme binding to membranes, which can be evidenced from the type of dependence of the bound hexokinase solubilization degree on KCl concentration in the eluting buffer. The enzyme absorption mediated by various cations is accompanied by corresponding changes in its kinetic properties (V, Km for glucose, Ki for ADP). The role of bivalent cations in the formation of the specific hexokinase-membrane binding is discussed.  相似文献   

19.
The interaction of hexokinase with mitochondria has emerged as a powerful mechanism in protecting many cell types against cell death. However, the role of mitochondrial hexokinase (mitoHK) in cardiac ischemia-reperfusion injury has as of yet received little attention. In this review we examine whether increased binding of hexokinase to the mitochondrion is also an integral component of cardioprotective signalling. We discuss observations in cardiac mitochondrial activation that directed us to the hypothesis of hexokinase cellular redistribution with reversible, cardioprotective ischemia, summarize the data showing that many cardioprotective interventions, such as ischemic preconditioning, insulin, morphine and volatile anesthetics, increase mitochondrial hexokinase binding within the intact heart, and discuss similarities between mitochondrial hexokinase association and ischemic preconditioning. Although most data indicate that mitochondrial hexokinase may indeed be an integral part of cardioprotection, a definitive proof for a causal relation between the amount of mitoHK and cardiac ischemia-reperfusion injury in the intact heart is eagerly awaited. When such relationship is indeed observed, the association of hexokinase with mitochondria will offer an opportunity to develop new therapies to combat ischemic cardiac diseases.  相似文献   

20.
Rat brain cytosolic and mitochondrial hexokinase activities were undetectable without added divalent cations. Mg2+ activated cytosolic (K0.5 of Mg2+ = 343 +/- 13 microM) and mitochondrial (K0.5 of Mg2+ = 183 +/- 8 microM) hexokinase in a concentration-related manner. The corresponding values for Mn2+ were 702 +/- 99 and 413 +/- 21 microM respectively. Ca2+, however, activated both forms of hexokinase poorly. In the presence of Mg2+, both Mn2+ and Cu2+ were more potent inhibitors of cytosolic hexokinase than mitochondrial hexokinase, whereas the inhibition of Cd2+ and Ca2+ did not show such selectivity. These results demonstrate that brain mitochondrial and cytosolic hexokinases differ significantly in their responses to divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号