首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genes rdmB and rdmC of Streptomyces purpurascens encoding aclacinomycin modifying enzymes RdmB and RdmC were expressed in Streptomyces lividans TK24. In contrast to the earlier suggestion that RdmC may be an esterase that causes the removal of the carbomethoxy group from the 10 position of aclacinomycins, RdmC functions as an aclacinomycin methyl esterase and catalyzes the removal of the methoxy group from the C-15 position of aclacinomycin T producing 15-demethoxyaclacinomycin T. RdmB acts upon C-10 of 15-demethoxyaclacinomycin T and is able to remove the carboxylic group from the C-10 position. It functions also as an aclacinomycin-10-hydroxylase being able to add a hydroxyl group at the same, C-10 position in vitro. Aclacinomycin methyl esterase was purified to apparent homogeneity from S. lividans carrying the rdmC and aclacinomycin-10-hydroxylase as a glutathione S-transferase fusion construct from Escherichia coli carrying the rdmB gene, respectively. Aclacinomycin methyl esterase functions as a monomer and aclacinomycin-10-hydroxylase as a tetramer. Aclacinomycin methyl esterase has an exceptionally high temperature stability and has an apparent K(m) for aclacinomycin T of 15.5 microM. The introduction of rdmC and rdmB in a Streptomyces galilaeus mutant HO38 produced the same modifications of aclacinomycin T in vivo as aclacinomycin methyl esterase and aclacinomycin-10-hydroxylase in vitro.  相似文献   

2.
Räty K  Kantola J  Hautala A  Hakala J  Ylihonko K  Mäntsälä P 《Gene》2002,293(1-2):115-122
We have cloned and sequenced polyketide synthase (PKS) genes from the aclacinomycin producer Streptomyces galilaeus ATCC 31,615. The sequenced 13.5-kb region contained 13 complete genes. Their organization as well as their protein sequences showed high similarity to those of other type II PKS genes. The continuous region included the genes for the minimal PKS, consisting of ketosynthase I (aknB), ketosynthase II (aknC), and acyl carrier protein (aknD). These were followed by the daunomycin dpsC and dpsD homologues (aknE2 and F, respectively), which are rare in type II PKS clusters. They are associated with the unusual starter unit, propionate, used in the biosynthesis of aklavinone, a common precursor of aclacinomycin and daunomycin. Accordingly, when aclacinomycins minimal PKS genes were substituted for those of nogalamycin in the plasmid carrying genes for auramycinone biosynthesis, aklavinone was produced in the heterologous hosts. In addition to the minimal PKS, the cloned region included the PKS genes for polyketide ketoreductase (aknA), aromatase (aknE1) and oxygenase (aknX), as well as genes putatively encoding an aklanonic acid methyl transferase (aknG) and an aklanonic acid methyl ester cyclase (aknH) for post-polyketide steps were found. Moreover, the region carried genes for an activator (aknI), a glycosyl transferase (aknK) and an epimerase (aknL) taking part in deoxysugar biosynthesis.  相似文献   

3.
Summary Aclacinomycin A, an antitumour antibiotic, was produced by fermentation with Streptomyces lavvendofoliae DKRS. Aclacinomycin A analogue compounds, such as aclacinomycins B and Y which are less effective as antitumour agents, were also produced in significant amounts. These analogue compounds could be converted to aclacinomycin A by incubation with the washed cell preparation as previously reported with S. galilaeus(Hoshino, T., Sekine, Y., Fujiwara, A. (1983) J.Antibiot. 36, 1458–1462). It was also found that the analogue compounds could be metabolically converted to aclacinomycin A by changing the pH of the culture broth at a later stage of fermentation. This metabolic conversion is expected to lead to additional benefits in the purification of aclacinomycin A as well as its increased production.  相似文献   

4.
Aclacinomycin methylesterase (RdmC) is one of the tailoring enzymes that modify the aklavinone skeleton in the biosynthesis of anthracyclines in Streptomyces species. The crystal structures of this enzyme from Streptomyces purpurascens in complex with the product analogues 10-decarboxymethylaclacinomycin T and 10-decarboxymethylaclacinomycin A were determined to nominal resolutions of 1.45 and 1.95 A, respectively. RdmC is built up of two domains. The larger alpha/beta domain shows the common alpha/beta hydrolase fold, whereas the smaller domain is alpha-helical. The active site and substrate binding pocket are located at the interface between the two domains. Decarboxymethylaclacinomycin T and decarboxymethylaclacinomycin A bind close to the catalytic triad (Ser102-His276-Asp248) in a hydrophobic pocket, with the sugar moieties located at the surface of the enzyme. The binding of the ligands is dominated by hydrophobic interactions, and specificity appears to be controlled mainly by the shape of the binding pocket rather than through specific hydrogen bonds. Mechanistic key features consistent with the structure of complexes of RdmC with product analogues are Ser102 acting as nucleophile and transition state stabilization by an oxyanion hole formed by the backbone amides of residues Gly32 and Met103.  相似文献   

5.
We have cloned and characterized a gene cluster for anthracycline biosynthesis from Streptomyces galilaeus. This cluster, 15-kb long, includes eight genes involved in the deoxyhexose biosynthesis pathway, a gene for a glycosyltransferase and one for an activator, as well as two genes involved in aglycone biosynthesis. Gene disruption targeted to the activator gene blocked production of aclacinomycins in S. galilaeus. Plasmid pSgs4, containing genes for a glycosyltransferase (aknS), an aminomethylase (aknX), a glucose-1-phosphate thymidylyltransferase (akn Y) and two genes for unidentified glycosylation functions (aknT and aknV), restored the production of aclacinomycins in the S. galilaeus mutants H063, which accumulates aklavinone, and H054, which produces aklavinone with rhodinose and deoxyfucose residues. Furthermore, pSgs4 directed the production of L-rhamnosyl-epsilon-rhodomycinone and L-daunosaminyl-epsilon-rhodomycinone in S. peucetius strains that produce epsilon-rhodomycinone endogenously. Subcloning of the gene cluster was carried out in order to further define the genes that are responsible for complementation and hybrid anthracycline generation.  相似文献   

6.
Summary The occurrence in the cell-free mycelium extract of an oxidoreductase is described which converts aclacinomycin A to aclacinomycins Y and B by use of oxygen as electron acceptor.  相似文献   

7.
Aklavinone-11-hydroxylase (RdmE) is a FAD monooxygenase participating in the biosynthesis of daunorubicin, doxorubicin and rhodomycins. The rdmE gene encodes an enzyme of 535 amino acids. The sequence of the Streptomyces purpurascens enzyme is similar to other Streptomyces aromatic polyketide hydroxylases. We overexpressed the gene in Streptomyces lividans and purified aklavinone-11-hydroxylase to apparent homogeneity with four chromatographic steps utilizing a kinetic photometric enzyme assay. The enzyme is active as the monomer with a molecular mass of 60 kDa; it hydroxylates aklavinone and other anthracyclinones. Aklavinone-11-hydroxylase can use both NADH and NADPH as coenzyme but it is slowly inactivated in the presence of NADH. The apparent Km for NADPH is 2 mM and for aklavinone 10 microM. The enzyme is inactivated in the presence of phenylglyoxal and 2,3-butanedione. NADPH protects against inactivation of aklavinone-11-hydroxylase by phenylglyoxal.  相似文献   

8.
Lu W  Leimkuhler C  Oberthür M  Kahne D  Walsh CT 《Biochemistry》2004,43(15):4548-4558
The antitumor drug aclacinomycin A is a representative member of the anthracycline subgroup that contains a C(7)-O-trisaccharide chain composed of L-2-deoxysugars. The sugar portion of the molecule, which greatly affects its biological activity, is assembled by dedicated glycosyltransferases; however, these enzymes have not been well-studied. Here we report the heterologous expression and purification of one of these enzymes, AknK, as well as the preparation of dTDP-L-2-deoxysugar donors, dTDP-L-2-deoxyfucose and dTDP-L-daunosamine, and the monoglycosyl aglycone, rhodosaminyl aklavinone. Our experiments show that AknK catalyzes the addition of the second sugar to the chain, using dTDP-L-2-deoxyfucose and rhodosaminyl aklavinone, to create the L-2-deoxyfucosyl-L-rhodosaminyl aklavinone. AknK also accepts an alternate dTDP-L-sugar, dTDP-L-daunosamine, and other monoglycosylated anthracyclines, including daunomycin, adriamycin, and idarubicin, to build alternate disaccharides on variant anthracycline backbones. Remarkably, AknK also catalyzes a tandem addition of a second L-2-deoxyfucosyl moiety, albeit with reduced activity, to the natural disaccharide chain to produce L-deoxyfucosyl-L-deoxyfucosyl-L-rhodosaminyl aklavinone, a variant of the natural aclacinomycin A. These results demonstrate that AknK may be a useful enzyme for the chemoenzymatic synthesis of anthracycline variants.  相似文献   

9.
Anthracyclines are aromatic polyketide antibiotics, and several of these compounds are widely used as anti-tumor drugs in chemotherapy. Aclacinomycin-10-hydroxylase (RdmB) is one of the tailoring enzymes that modify the polyketide backbone in the biosynthesis of these metabolites. RdmB, a S-adenosyl-L-methionine-dependent methyltransferase homolog, catalyses the hydroxylation of 15-demethoxy-epsilon-rhodomycin to beta-rhodomycin, one step in rhodomycin biosynthesis in Streptomyces purpurascens. The crystal structure of RdmB, determined by multiwavelength anomalous diffraction to 2.1A resolution, reveals that the enzyme subunit has a fold similar to methyltransferases and binds S-adenosyl-L-methionine. The N-terminal domain, which consists almost exclusively of alpha-helices, is involved in dimerization. The C-terminal domain contains a typical alpha/beta nucleotide-binding fold, which binds S-adenosyl-L-methionine, and several of the residues interacting with the cofactor are conserved in O-methyltransferases. Adjacent to the S-adenosyl-L-methionine molecule there is a large cleft extending to the enzyme surface of sufficient size to bind the substrate. Analysis of the putative substrate-binding pocket suggests that there is no enzymatic group in proximity of the substrate 15-demethoxy-epsilon-rhodomycin, which could assist in proton abstraction and thus facilitate methyl transfer. The lack of a suitably positioned catalytic base might thus be one of the features responsible for the inability of the enzyme to act as a methyltransferase.  相似文献   

10.
Streptomyces galilaeus ATCC 31133 and ATCC 31671, producers of the anthracyclines aclacinomycin A and 2-hydroxyaklavinone, respectively, formed an anthraquinone, aloesaponarin II, when they were transformed with DNA from Streptomyces coelicolor containing four genetic loci, actI, actIII, actIV, and actVII, encoding early reactions in the actinorhodin biosynthesis pathway. Subcloning experiments indicated that a 2.8-kilobase-pair XhoI fragment containing only the actI and actVII loci was necessary for aloesaponarin II biosynthesis by S. galilaeus ATCC 31133. Aloesaponarin II was synthesized via the condensation of 8 acetyl coenzyme A equivalents, followed by a decarboxylation reaction as demonstrated by [1,2-13C2]acetate feeding experiments. S. coelicolor B22 and B159, actVI blocked mutants, also formed aloesaponarin II as an apparent shunt product. Mutants of S. coelicolor blocked in several other steps in actinorhodin biosynthesis did not synthesize aloesaponarin II or other detectable anthraquinones. When S. galilaeus ATCC 31671 was transformed with the DNA carrying the actI, actIII, and actVII loci, the recombinant strain produced both aloesaponarin II and aklavinone, suggesting that the actinorhodin biosynthesis DNA encoded a function able to deoxygenate 2-hydroxyaklavinone to aklavinone. When S. galilaeus ATCC 31671 was transformed with a plasmid carrying only the intact actIII gene (pANT45), aklavinone was formed exclusively. These experiments indicate a function for the actIII gene, which is the reduction of the keto group at C-9 from the carboxy terminus of the assembled polyketide to the corresponding secondary alcohol. In the presence of the actIII gene, anthraquinones or anthracyclines formed as a result of dehydration and aromatization lack an oxygen function on the carbon on which the keto reductase operated. When S. galilaeus ATCC 31671 was transformed with the DNA carrying the actI, actVII, and actIV loci, the recombinant strain produced two novel anthraquinones, desoxyerythrolaccin, the 3-hydroxy analog of aloesaponarin II, and 1-O-methyldesoxyerythrolaccin. The results obtained in these experiments together with earlier data suggest a pathway for the biosynthesis of actinorhodin and related compounds by S. coelicolor.  相似文献   

11.
Six open reading frames, rdmA to rdmF, in a 6,077-bp segment of Streptomyces purpurascens DNA which caused the production of hybrid anthracyclines were identified. The minimal fragment that produced anthracyclines modified at the 10th position contained rdmB to rdmD; rdmE is the gene for aklavinone-11-hydroxylase. RdmC is similar to a putative open reading frame in the daunorubicin biosynthetic cluster of Streptomyces peucetius and is likely to participate in the removal of the side chain at the 10th position.  相似文献   

12.
Liquid cultures of a mutant strain of Fusarium sporotrichioides NRRL 3299 that accumulates trichodiene rather than T-2 toxin converted tricho-9-ene-2 alpha,3 alpha,11 alpha-triol, trichotriol (tricho-10-ene-2 alpha,3 alpha,9 alpha-triol), tricho-10-ene-2 alpha,3 alpha,9 beta-triol, 3 alpha-hydroxytrichothecene, and 3 alpha-acetoxytrichothecene to T-2 toxin. Other possible oxygenated precursors of T-2 toxin, including trichodiol (tricho-10-ene-2 alpha,9 alpha-diol), trichothecene, 4 alpha-hydroxytrichothecene, and 15-hydroxytrichothecene, were not metabolized. The results indicate that in the biosynthesis of T-2 toxin by F. sporotrichioides, (i) oxygenation at C-3 occurs prior to the second cyclization, (ii) this second cyclization involves two steps that may be nonenzymatic, and (iii) oxidation at C-3 precedes that at C-4 or C-15.  相似文献   

13.
P Stover  V Schirch 《Biochemistry》1992,31(7):2148-2155
Solutions of 5,10-methenyltetrahydropteroylglutamate can be converted to a stable hydrated adduct by heating solutions at 50 degrees C at pH values of 3-5 for several hours. The adduct is stable at pH values from 4 to 9 for hours, but at pH values below 2 it is converted to 5,10-methenyltetrahydropteroylglutamate and at pH values above 8 it is converted to 5-formyltetrahydropteroylglutamate. Arguments are presented that the adduct is (11R)-5,10-hydroxymethylenetetrahydropteroylglutamate formed from (11S)-5,10-hydroxymethylenetetrahydropteroylglutamate by formation of an ylide at C-11 which undergoes inversion of the electron pair to form the (11R) isomer. The (11R) hydrated adducted is believed to be the isomer of 5,10-methenyltetrahydropteroylglutamate referred to as anhydroleucovorin B by Cosulich et al. [Cosulich, D. C., Roth, B., Smith, J. M., Hultquist, M. E., & Parker, R. P. (1952) J. Am. Chem. Soc. 74, 3252-3263]. In addition, a new mechanism for the formation of 5-formyltetrahydropteroylglutamate from either 5,10-methenyltetrahydropteroylglutamate or 10-formyltetrahydropteroylglutamate via (11R)-5,10-hydroxymethylenetetrahydropteroylglutamate is proposed. A requirement for this pathway is that the formyl proton of 10-formyltetrahydropteroylglutamate exchange with solvent protons. The exchange of this formyl proton was observed at all pH values from 5.5 to 11.5 at a rate which exceeded by more than an order of magnitude the rate of formation of 5-formyltetrahydropteroylglutamate.  相似文献   

14.
Rates of microsomal 17β-estradiol (E2) hydroxylation at the C-2, -4, -6, and -15 positions are each induced greater than 10-fold by treating MCF-7 breast cancer cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The TCDD-induced activities at the C-2, -6 and -15 positions have been attributed to cytochrome P450 1A1 (CYP1A1); however, the low Km 4-hydroxylase induced by TCDD appears to be a distinct enzyme. We report here that antibodies to cytochrome P450-EF (mouse CYP1B1) selectivity inhibited the C-4 hydroxylation of E2 catalyzed by microsomes from TCDD-treated MCF-7 cells. Western blots probed with anti-CYP1B antibodies showed the induction of a 52 kDa microsomal protein in response to treatment with TCDD in MCF-7 cells. Western blots of microsomes from HepG2 cells did not show the TCDD-induced 52 kDa protein, and microsomes from TCDD-treated HepG2 cells did not catalyze a low Km hydroxylation of E2 at C-4. Cellular metabolism experiments also showed induction of both the C-2 and -4 hydroxylation pathways in TCDD-treated MCF-7 cells as evidenced by elevated 2- and 4-methoxyestradiol (MeOE2) formation. In contrast, TCDD-treated HepG2 cells showed 2-MeOE2 formation predominantly over 4-MeOE2. Northern blots of RNA isolated from untreated and TCDD-treated cells, when probed with the human CYP1B1 cDNA, showed induction of a 5.2 kb RNA in MCF-7 cells but not in HepG2 cells in response to treatment with TCDD. These results provide additional evidence for the induction by TCDD of a novel E2 4-hydroxylase in MCF-7 cells but not in HepG2 cells and indicate possible endocrine regulatory roles for the newly discovered group of enzymes of the CYP1B subfamily.  相似文献   

15.
Liquid cultures of a mutant strain of Fusarium sporotrichioides NRRL 3299 that accumulates trichodiene rather than T-2 toxin converted tricho-9-ene-2 alpha,3 alpha,11 alpha-triol, trichotriol (tricho-10-ene-2 alpha,3 alpha,9 alpha-triol), tricho-10-ene-2 alpha,3 alpha,9 beta-triol, 3 alpha-hydroxytrichothecene, and 3 alpha-acetoxytrichothecene to T-2 toxin. Other possible oxygenated precursors of T-2 toxin, including trichodiol (tricho-10-ene-2 alpha,9 alpha-diol), trichothecene, 4 alpha-hydroxytrichothecene, and 15-hydroxytrichothecene, were not metabolized. The results indicate that in the biosynthesis of T-2 toxin by F. sporotrichioides, (i) oxygenation at C-3 occurs prior to the second cyclization, (ii) this second cyclization involves two steps that may be nonenzymatic, and (iii) oxidation at C-3 precedes that at C-4 or C-15.  相似文献   

16.
To increase the therapeutic utility of C-18 side-chain bearing pseudomycin analogue 2, we prepared additional analogues and prodrugs of 2 containing further modifications at various positions within its core structure. Each of the newly synthesized derivatives (10-15) exhibited reduced tail vein toxicity relative to the parent compound. Some of the new pseudomycin derivatives (e.g., 14) also showed improved in vivo antifungal activity relative to its corresponding parent compound.  相似文献   

17.
The substrate specificity of a sex-specific hepatic 15-hydroxylase active on different C21O2 and C21O3 steroids was studied in the isolated perfused liver from female rats. Liquid-chromatographic separation methods in combination with computerized gas chromatography-mass spectrometry was employed to identify the metabolites formed. The majority (between 75-90%) of 15-hydroxylated compounds isolated were present as monosulphate conjugates while smaller amounts of disulphates were also detected. Hydroxylation was found to take place exclusively at position 15 beta. A certain number of 11-deoxy-21-hydroxy, 11-oxo-21-hydroxy and 11,21-dihydroxy steroids with a 3-keto-delta4-, 3-keto-5 alpha(5 beta)-, 3alpha, 5alpha- or 3 beta, 5 beta-structure were readily converted to 15 beta-hydroxylated metabolites. Depending on the structure of the substrate, between 20 and 87% of the total metabolites formed were 15 beta-hydroxylated. 5 alpha-Reduced steroids were better substrates for the hydroxylase than the corresponding 3-keto-delta4- or 5 beta-reduced compounds. The configuration of the hydroxylgroup at C-3 did not affect the degree of 15-hydroxylation. 11 beta-Hydroxylated steroids served as better substrates than the corresponding 11-dehydro-, 11-deoxy- or 11 alpha-hydroxy compounds. 5 alpha-Dihydrocorticosterone and 3 alpha, 5 alpha-tetrahydrocorticosterone were the best substrates for the 15 beta-hydroxylase.  相似文献   

18.
Polyene macrolide antibiotics, including nystatin and amphotericin B, possess fungicidal activity and are being used as antifungal agents to treat both superficial and invasive fungal infections. Due to their toxicity, however, their clinical applications are relatively limited, and new-generation polyene macrolides with an improved therapeutic index are highly desirable. We subjected the polyol region of the heptaene nystatin analogue S44HP to biosynthetic engineering designed to remove and introduce hydroxyl groups in the C-9-C-10 region. This modification strategy involved inactivation of the P450 monooxygenase NysL and the dehydratase domain in module 15 (DH15) of the nystatin polyketide synthase. Subsequently, these modifications were combined with replacement of the exocyclic C-16 carboxyl with the methyl group through inactivation of the P450 monooxygenase NysN. Four new polyene macrolides with up to three chemical modifications were generated, produced at relatively high yields (up to 0.51 g/liter), purified, structurally characterized, and subjected to in vitro assays for antifungal and hemolytic activities. Introduction of a C-9 hydroxyl by DH15 inactivation also blocked NysL-catalyzed C-10 hydroxylation, and these modifications caused a drastic decrease in both antifungal and hemolytic activities of the resulting analogues. In contrast, single removal of the C-10 hydroxyl group by NysL inactivation had only a marginal effect on these activities. Results from the extended antifungal assays strongly suggested that the 9-hydroxy-10-deoxy S44HP analogues became fungistatic rather than fungicidal antibiotics.  相似文献   

19.
20.
A 4(20),11(12)-taxadiene derivative was converted to hydroxylated derivatives by Cunninghamella elegans AS3.2033 and Cunninghamella elegans var chibaensis ATCC 20230. Both microorganisms led to C-1 hydroxylations and conversion to a C-15-hydroxylated abeo-taxane. Additional products from the two fungi differed: a C-14 oxidation and a trans-cis isomerization of the cinnamoyl for one and an unprecedented hydroxylation at C-17 for the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号