首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstructing the phylogeographic patterns of widely distributedand common freshwater mussel species (Bivalvia: Unionidae) mayprovide insight into unionid evolution and speciation. The Wabashpigtoe, Fusconaia flava, is currently recognized as a single,polytypic species that is widely distributed and common throughoutthe Mississippi River drainage and parts of the Canadian Interior,Great Lakes and Gulf Coast drainages. Sequence analysis of themitochondrial COI gene revealed two divergent (3.43%) clades.Clade A consisted of specimens located throughout the upperand lower Mississippi River drainage and in the Red River (Canada)and Lake Erie drainages and all F. cerina specimens. All haplotypeswithin clade A differed by three (0.55%) or fewer nucleotidesubstitutions from the most widely distributed and abundanthaplotype, F1. Clade B, consisting of specimens located in thefar western portion of the species' range, may comprise an undescribedspecies. There was no evidence of genetic differentiation amongF. flava inhabiting headwater and intermediate-sized river localitiesof the Muskingum River system and large river localities ofthe nearby Ohio River. The divergence among F. flava haplotypescomprising clade A (0.18–1.10%) was similar to the divergencebetween the F. cerina haplotypes and the F. flava haplotypescomprising clade A (0–1.10%). This study illustrates theimportance of accessing genetic diversity across the distributionof a polytypic species. Additional analyses based on a combinationof morphology and genetics are needed to determine the taxonomicstatus of clade B and to strengthen our understanding of therelationship between F. flava and F. cerina. (Received 28 May 2007; accepted 13 August 2007)  相似文献   

2.
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.  相似文献   

3.
Mussels in several orders possess two separate mitochondrial lineages: a standard female‐inherited form and one inherited only through males. This system of doubly uniparental inheritance (DUI) for mitochondrial genes provides an opportunity to compare the population structure of gene‐lineages passed either mother‐to‐daughter or father‐to‐son. In the present study, we contrast variation in the male and female haplotype lineages of the American freshwater mussel species, Lampsilis siliquoidea (sometimes called Lampsilis radiata luteola), throughout the Lake Erie, Ohio River, and upper Mississippi River watersheds, and contrast variation with the sequences obtained for the related species/subspecies Lampsilis radiata radiata from Maine. The genetic markers were fragments of the cytochrome c oxidase subunit I gene (COI), which occurs in both mitochondrial types, F (female) and M (male). High haplotype diversity was found in the two independent lineages, although purifying selection against amino acid change appeared to be stronger in the female than the male lineage. Phylogeographical patterns also varied between mitochondria passing through females and males. The female lineage exhibited more population structure, with the occurrence of private or nearly‐private haplotypes within two streams, and three others showed restricted haplotype distributions. By contrast to the F‐haplotypes, complex phylogenetic structure occurred for M‐haplotypes, yet this phylogenetic variation coincided with almost no geographical pattern within haplotypes. Basically, F‐haplotypes showed isolation, especially above physical barriers, whereas M‐haplotypes did not. A few individuals in the eastern Lake Erie watershed even possessed M‐haplotypes of an Atlantic Slope (L. radiata radiata) origin, although their F‐haplotypes were typical of Midwestern L. siliquoidea. The finding that mussels package sperm as spermatozuegmata, which float downstream, may underlie greater gene mobility in male‐inherited mitochondria. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 229–240.  相似文献   

4.
Extrinsic and intrinsic forces combined shape the population structure of every species differently. Freshwater mussels are obligate parasites to a host fish during a juvenile stage (glochidia). Elliptio dilatata (ED) and Actinonaias ligamentina (AL) are co-occurring freshwater mussel taxa with similar North American distribution and share some potential host fish. Using mitochondrial DNA, we determined the genotypes of 190 + individuals from collection sites in at least two tributaries in the Lake Erie and Ohio River watersheds, along with the Ouachita and Strawberry rivers in the southeast. Both species had followed a stepping-stone model of dispersal, with greater pairwise genetic structure among collection sites of ED. Also, phylogeographical analysis for ED found significant geographical structuring of haplotype diversity. Overall, within-population variation increased significantly from north to south, with low genetic diversity in the Strawberry River. We calculated significant among-population structure for both species (ED: Phi(ST) = 0.62, P < 0.001; AL: Phi(ST) = 0.16, P < 0.001). Genetic analysis identified the Ouachita River as an area of significant reproductive isolation for both species. Results for AL indicated dispersal into northern areas from two genetically distinct glacial refugia, where results for ED indicated dispersal followed by low gene flow in northern areas. The conservation strategies for mussels that co-occur in the same 'bed' could be species specific. Species such as ED have management units on the population scale, where AL has a more homogeneous genetic structure across its range.  相似文献   

5.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

6.
1. Freshwater mussels (Order Unionoida) are the most imperiled faunal group in North America; 60% of described species are considered endangered or threatened, and 12% are presumed extinct. Widespread habitat degradation (including pollution, siltation, river channelization and impoundment) has been the primary cause of extinction during this century, but a new stress was added in the last decade by the introduction of the Eurasian zebra mussel, Dreissena polymorpha , a biofouling organism that smothers the shells of other molluscs and competes with other suspension feeders for food. Since the early 1990s, it has been spreading throughout the Mississippi River basin, which contains the largest number of endemic freshwater mussels in the world. In this report, we use an exponential decay model based on data from other invaded habitats to predict the long-term impact of D. polymorpha on mussel species richness in the basin.
2. In North American lakes and rivers that support high densities (>3000 m−2) of D. polymorpha , native mussel populations are extirpated within 4–8 years following invasion. Significant local declines in native mussel populations in the Illinois and Ohio rivers, concomitant with the establishment of dense populations of D. polymorpha , suggest that induced mortality is occurring in the Mississippi River basin.
3. A comparison of species loss at various sites before and after invasion indicates that D. polymorpha has accelerated regional extinction rates of North American freshwater mussels by 10-fold. If this trend persists, the regional extinction rate for Mississippi basin species will be 12% per decade. Over 60 endemic mussels in the Mississippi River basin are threatened with global extinction by the combined impacts of the D. polymorpha invasion and environmental degradation.  相似文献   

7.
Cristaria plicata was an important freshwater mussel for pearl culture in China. 18 polymorphic microsatellite markers were isolated and characterized using (CA)15-enriched genomic library of C. plicata. These loci showed high levels of genetic polymorphism testing on 60 individuals sampled from Poyang Lake of Jiangxi Province, China. The number of alleles per locus ranged from 4 to 18. The expected (H E) and observed heterozygosities (H O) were 0.7232–0.8961 and 0.0000–1.0000, respectively. Four microsatellite loci were significantly deviated from Hardy–Weinberg equilibrium and no linkage disequilibrium was found. These microsatellite loci will be useful for assessment of genetic diversity and population structure in C. plicata.  相似文献   

8.
Aim To examine the effects of historical climate change and drainage isolation on the distribution of mitochondrial DNA cytochrome b genetic variation within the rainbow darter, Etheostoma caeruleum (Percidae: Etheostomatinae). Location Eastern North American streams including tributaries to the Mississippi River, Great Lakes, Potomac River and Hudson Bay drainages. Methods Parsimony analyses, Bayesian analyses and haplotype networks of mitochondrial DNA sequences. Results Four major clades were recovered from sampled populations of E. caeruleum. Three of four clades are distributed in the western portion of the species’ range (primarily west of the Mississippi River). Samples from this region do not form a monophyletic group, and sequences often vary greatly between samples from adjacent stream systems (up to 7.2% divergence). A basal clade includes samples from the White River system in the Ozark Highlands. The northern Ozarks–upper Midwest clade includes samples from Missouri River tributaries and the upper Midwest (Hudson Bay, upper Mississippi River, and western Lake Michigan drainage). The eastern clade is composed of individuals from the Ohio River, Great Lakes and Potomac River. The Mississippi River corridor clade includes samples from middle and lower Mississippi River tributaries. Main conclusions The four major clades of E. caeruleum are deep allopatric lineages with well‐defined boundaries and have additional phylogeographical structure within each clade. The Ozark Highlands have the greatest levels of diversity relative to distributional area, with marked cytochrome b subdivisions between adjacent stream systems. Samples from previously glaciated areas do not have a subset of the cytochrome b diversity found in unglaciated areas, but four separate source areas are identified based on phylogenetic analyses. Dispersal into previously glaciated areas followed several known glacial outlets and, based on sequence divergence between populations, may have occurred during different glacial or interglacial stages. The disjunct distribution and cytochrome b pattern of E. caeruleum in the Mississippi River corridor clade is consistent with late Pleistocene and Recent changes in the course and characteristics of the middle and lower Mississippi River. Phylogeographical boundaries between clades of E. caeruleum correspond to independent sources of biogeographical information and provide insight into historical stream drainage relationships, post‐glacial colonization and drainage isolation patterns.  相似文献   

9.
The bigeye chub, Hybopsis amblops, is a member of the Central Highlands ichthyofauna of eastern North America. Phylogenetic analyses of the H. amblops species group based on a 1059 bp fragment of the mitochondrial DNA cytochrome b gene did not recover a monophyletic group. The inclusion of Hybopsis hypsinotus in the species complex is questionable. Within H. amblops, five strongly supported clades were identified; two clades containing haplotypes from the Ozark Highlands and three clades containing haplotypes from the Eastern Highlands and previously glaciated regions of the Ohio and Wabash River drainages. Estimates of the timing of divergence indicated that prior to the onset of glaciation, vicariant events separated populations east and west of the Mississippi River. East of the Mississippi River glacial cycles associated with the blocking and rerouting of the Teays River system caused populations to be pushed southward into refugia of the upper Ohio River. Following the most recent Wisconsinan glaciation, populations expanded northward into previously glaciated regions and southward into the Cumberland River drainage. In the Ozarks, west of the Mississippi River, isolation of clades appears to be maintained by the lack of stream capture events between the upper Arkansas and the White River systems and a barrier formed by the Arkansas River.  相似文献   

10.
Catchment population structure and divergence patterns of the rainbow darter Etheostoma caeruleum (Percidae: Teleostei), an eastern North American benthic fish, are tested using a landscape genetics approach. Allelic variation at eight nuclear DNA microsatellite loci and two mitochondrial DNA regions [cytochrome (cyt) b gene and control region; 2056 aligned base pairs (bp)] is analysed from 89 individuals and six sites in the Lake Erie catchment (Blanchard, Chagrin, Cuyahoga and Grand Rivers) v. the Ohio River catchment (Big Darby Creek and Little Miami River). Genetic and geographic patterning is assessed using phylogenetic trees, pair‐wise FST analogues, AMOVA partitioning, Mantel regression, Bayesian assignment, 3D factorial correspondence and barrier analyses. Results identify 34 cyt b haplotypes, 22 control region haplotypes and 137 microsatellite alleles whose distributions demonstrate marked genetic divergence between populations from the Lake Erie and Ohio River catchments. Etheostoma caeruleum populations in the Lake Erie and Ohio River catchments diverged c. 1·6 mya during the Pleistocene glaciations. Greater genetic separations characterize the Ohio River populations, reflecting their older habitat age and less recent connectivity. Divergence levels within the Lake Erie catchment denote more recent post‐glacial origins. Notably, the western Lake Erie Blanchard River population markedly differs from the three central basin tributary samples, which are each genetically distinguishable using microsatellites. Overall relationships among the Lake Erie sites refute a genetic isolation by geographic distance hypothesis. Etheostoma caeruleum populations thus exchange few genes and have low migration among tributaries and catchments.  相似文献   

11.
North American freshwater mussel species have experienced substantial range fragmentation and population reductions. These impacts have the potential to reduce genetic connectivity among populations and increase the risk of losing genetic diversity. Thirteen microsatellite loci and an 883 bp fragment of the mitochondrial ND1 gene were used to assess genetic diversity, population structure, contemporary migration rates, and population size changes across the range of the Sheepnose mussel (Plethobasus cyphyus). Population structure analyses reveal five populations, three in the Upper Mississippi River Basin and two in the Ohio River Basin. Sampling locations exhibit a high degree of genetic diversity and contemporary migration estimates indicate that migration within river basins is occurring, although at low rates, but there is no migration is occurring between the Ohio and Mississippi river basins. No evidence of bottlenecks was detected, and almost all locations exhibited the signature of population expansion. Our results indicate that although anthropogenic activity has altered the landscape across the range of the Sheepnose, these activities have yet to be reflected in losses of genetic diversity. Efforts to conserve Sheepnose populations should focus on maintaining existing habitats and fostering genetic connectivity between extant demes to conserve remaining genetic diversity for future viable populations.  相似文献   

12.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

13.
The anadromous Gulf sturgeon occurs along the north central coast of the Gulf of Mexico and is federally listed as threatened. We analyzed fine‐scale patterns of Gulf sturgeon population structure, focusing on the Pascagoula River drainage of Mississippi, in reference to movement patterns as determined via telemetry and capture data. We genotyped 361 Gulf sturgeon using eight microsatellite loci including samples from the Pascagoula, Pearl, Escambia, Yellow, Choctawhatchee, and Apalachicola river drainages. Pairwise FST estimates indicated that genetic structure occurs at least at the drainage level. The Pascagoula and Pearl rivers form a western group, demonstrating 100% bootstrap support for a division with drainages to the east. Assignment tests detected non‐natal genotypes occurring in all drainages. According to assignment tests, the Pascagoula supports an admixture of individuals, containing minimal influence from drainages to the east (2%) and substantial interaction with the Pearl River (14.1%). The occurrence of Pascagoula River fish in the Pearl was non‐reciprocal, observed at 1.1%. After accounting for non‐natal genetic diversity within the Pascagoula, there remained a disparity between a pooled Pascagoula group and the only documented spawning site within the drainage located in the Bouie River. We interpret this as an indication of a second genetic stock within the Pascagoula River drainage. Radio telemetry data suggest that spawning likely occurs in the Chickasawhay River, in areas isolated from the Bouie River spawning site by about 350 river kilometers. We emphasize the utility of integrating field and molecular approaches when delineating fine‐scale patterns of population structure in anadromous fishes.  相似文献   

14.
Seven populations of the imperiled snuffbox mussel, Epioblasma triquetra , were sampled from across the central basin of North America. Samples were genotyped using 15 microsatellite DNA loci, and maternal history was inferred using mitochondrial DNA (mtDNA) cytochrome  c oxidase subunit-I (COI) sequences. Populations in the Clinch and St Francis rivers were quite distinct in their mtDNA. The population in the St Francis River had a unique, fixed haplotype. Among a suite of haplotypes, the population in the Clinch River had two unique haplotypes of common ancestry. The other populations were dominated by a common haplotype, which also occurred in the Clinch River population. Analysis of DNA microsatellites revealed much greater divergences and showed significant genetic structure between populations in the formerly glaciated regions. Divergence has occurred between the populations, as evidenced by moderate to high fixation indices ( F ST and R ST values) and nearly perfect assignment tests. These results indicate the occurrence of three glacial refugia for E. triquetra : the Tennessee River, rivers south of the Ozark Crest, and the lower Ohio River drainage near the confluence with the Mississippi. Populations in the lower Ohio River were likely to be responsible for the postglacial reinvasion into formerly glaciated regions, and into the upper Tennessee River drainage. The population of the St Francis River may constitute a distinct taxonomic entity. Conservation efforts, if necessary for this imperiled species, should not mix populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 371–384.  相似文献   

15.
Aim To investigate the phylogeographic structure of the widespread freshwater prawn, Macrobrachium australiense, within and between major Australian drainage basins using mitochondrial sequence data. This will enable the investigation of historical connections between major drainages and examination of hypotheses of biogeographic associations among Australian freshwater basins. Location Inland, eastern and northern Australia. Methods Sequencing 16S rRNA and ATPase 6 protein coding mitochondrial DNA genes from M. australiense from 19 locations from inland, eastern and northern Australia. Results Within drainage basins, haplotype trees are monophyletic, with the exception of the Finke River from the Lake Eyre Basin. Macrobrachium australiense from the two main inland drainages, the Murray–Darling and Lake Eyre Basin are divergent from each other and do not form a monophyletic group, instead the Murray–Darling Basin haplotypes clade with eastern coastal haplotypes. Haplotypes from neighbouring eastern coastal drainages were found to be quite divergent from each other. Main conclusions The phylogeographic relationships among M. australiense suggest that the two major inland drainages, the Murray–Darling Basin and the Lake Eyre Basin, are not biogeographically closely associated to each other. Instead the Murray–Darling Basin is more closely allied with the eastern coastal drainages across the Great Dividing Range. Despite their proximity the neighbouring southeast Queensland coastal Mary and Brisbane Rivers are also biogeographically divergent from each other. The results also indicate that the Finke River appears to have been isolated from the remainder of the Lake Eyre Basin catchment for a significant period of time.  相似文献   

16.
Epactionotus species are known for inhabiting the rocky-bottom stretches of fast-flowing rivers in a limited geographic area along the Atlantic coast of southern Brazil. These species are endemic to single coastal river drainages (two neighbouring drainages for Epactionotus bilineatus) isolated from each other by the coastal lacustrine environments or the Atlantic Ocean. E. bilineatus is from the Maquiné and Três Forquilhas River basins, both tributaries of the Tramandaí River system, whereas E. itaimbezinho is endemic to the Mampituba River drainage and Epactionotus gracilis to the Araranguá River drainage. Recent fieldwork in the Atlantic coastal drainages of southern Brazil revealed new populations in the Urussanga, Tubarão, d'Una and Biguaçu River drainages. Iterative species delimitation using molecular data (cytochrome c oxidase subunit I) and morphology (morphometrics and meristics) was applied to evaluate species recognition of isolated populations. With regard to new data, the genus was re-diagnosed, the status of Epactionotus species/populations was re-evaluated, formerly described species were supported and population structure was recognized. As for the newly discovered populations, both morphological and molecular data strongly support the population from the Biguaçu River drainage, in Santa Catarina State, as a new species. Molecular data revealed strong per-basin population structure, which may be related to species habitat specificity and low or no dispersal among drainages.  相似文献   

17.
Shovelnose sturgeon (Scaphirhynchus platorhynchus) caviar fisheries exist in several states throughout the Mississippi River drainage. Management of these fisheries may benefit from information about genetic stock structure. Sixteen microsatellite loci and morphological analysis were used to examine geographic stock structure of shovelnose sturgeon among seven geographic locations: five within continuous shovelnose sturgeon habitat, and two isolated by artificial barriers. Tissue samples were collected from 1999 to 2006 from the upper Missouri, Platte, lower Missouri, middle Mississippi, Ohio, Wabash, and Atchafalaya rivers. Geographic samples of shovelnose sturgeon samples could be separated into three groups with discriminate function analysis of four morphological characters. The microsatellite loci were highly variable (allelic richness range 5.65–13, observed heterozygosity range 0.64–0.89). Bayesian clustering did not identify multiple groups in the genetic data. However, significant genetic differentiation (θST = 0.017, P < 0.0001) was observed among a priori defined geographic samples and all pairwise estimates of θST were significant. Assignment testing among a priori defined groups indicated that the sturgeon from the upper Missouri, Platte, and Atchafalaya rivers had the highest assignment scores and thus were most distinct, while the lower Missouri and the middle Mississippi were less distinct and a larger fraction of the sturgeon from these rivers was genetically assigned to other rivers. The Ohio and Wabash rivers were genetically most similar. A Mantel test revealed a positive relationship between genetic and geographic distance (r = 0.464, P = 0.055) that was not statistically significant. The level of genetic differentiation observed at both molecular and morphological characters suggests that multiple shovelnose sturgeon populations may exist within the studied area, yet demographic factors and possible gene flow may have minimized the amount of genetic differentiation among locations.  相似文献   

18.
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai–Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi. 2. Nucleotide diversities (π) were moderate (0.0024–0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018–0.0021) in populations from Qiadam Basin. It is probable that the low intra‐population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history. 3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise FST tests were significant, with non‐significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north‐west of the Qinghai–Tibetan Plateau. Analysis of molecular variance (amova ) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems. 4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai–Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations. 5. The significantly large negative Fs‐value (−24.91, P < 0.01) of Fu's Fs‐test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement. 6. The results of this study indicate that each population from the Qinghai–Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.  相似文献   

19.
The crystal darter, Crystallaria asprella, exists in geographically isolated populations that may be glacial relicts from its former, wide distribution in the Eastern U.S. An initial phylogeographic survey of C. asprella based upon the mitochondrial cytochrome b (cyt b) gene indicated that there were at least four distinct populations within the species: Ohio River basin, Upper Mississippi River, Gulf coast, and lower Mississippi River. In particular, the most divergent population was the most recently discovered, from the Elk River, WV, in the Ohio River basin, and it was postulated that this population represents an undescribed, potentially threatened species. However, differentiation observed at a single gene region is generally not considered sufficient evidence to establish taxonomic status. In the present study, nucleotide variation at the mitochondrial control region and a nuclear S7 ribosomal gene intron were compared to provide independent verification of phylogeographic results between individuals collected from the same five disjunct populations previously surveyed. Variation between populations at the control region was substantial (except between Gulf drainages) and was concordant with patterns of sequence divergence from cyt b. Only the Elk River population was resolved as monophyletic based upon nuclear S7, but significant differences based upon ΦST statistics were observed between most populations. Morphometric data were consistent with molecular data regarding the distinctiveness of the Elk River population. It is proposed that populations of C. asprella consist of at least four distinct population segments, and that the Elk River group likely constitutes a distinct species.  相似文献   

20.
Analysis of population genetic relationships reveals the signatures of current processes such as spawning behaviour and migration, as well as those of historical events including vicariance and climate change. This study examines these signatures through testing broad‐ to fine‐scale genetic patterns among smallmouth bass Micropterus dolomieu spawning populations across their native Great Lakes range and outgroup areas, with fine‐scale concentration in Lake Erie. Our primary hypotheses include whether genetic patterns result from behavioural and/or geographical isolation, specifically: (i) Are spawning groups in interconnected waterways genetically separable? (ii) What is the degree of isolation across and among lakes, basins, and tributaries? (iii) Do genetic divergences correspond to geographical distances? and (iv) Are historical colonization patterns from glacial refugia retained? Variation at eight nuclear microsatellite DNA loci are analysed for 666 smallmouth bass from 28 locations, including 425 individuals in Lake Erie; as well as Lakes Superior, Huron, and Ontario, and outgroups from the Mississippi, Ohio, St. Lawrence, and Hudson River drainages. Results reveal marked genetic differences among lake and river populations, as well as surprisingly high divergences among closely spaced riverine sites. Results do not fit an isolation‐by‐geographical‐distance prediction for fine‐scale genetic patterns, but show weak correspondence across large geographical scales. Genetic relationships thus are consistent with hypotheses regarding divergent origins through vicariance in glacial refugia, followed by colonization pathways establishing modern‐day Great Lakes populations, and maintenance through behavioural site fidelity. Conservation management practices thus should preserve genetic identity and unique characters among smallmouth bass populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号