首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Amphiuma red blood cells, the Na/H exchanger has been shown to play a central role in the regulation of cell volume following cell shrinkage (Cala, P. M. 1980. Journal of General Physiology. 76:683- 708.) The present study was designed to evaluate the existence of pH regulatory Na/H exchange in the Amphiuma red blood cell. The data illustrate that when the intracellular pHi was decreased below the normal value of 7.00, Na/H exchange was activated in proportion to the degree of acidification. Once activated, net Na/H exchange flux persisted until normal intracellular pH (6.9-7.0) was restored, with a half time of approximately 5 min. These observations established a pHi set point of 7.00 for the pH-activated Na/H exchange of Amphiuma red blood cell. This is in contrast to the behavior of osmotically shrunken Amphiuma red blood cells in which no pHi set point could be demonstrated. That is, when activated by cell shrinkage the Na/H exchange mediated net Na flux persisted until normal volume was restored regardless of pHi. In contrast, when activated by cell acidification, the Na/H exchanger functioned until pHi was restored to normal and cell volume appeared to have no effect on pH-activated Na/H exchange. Studies evaluating the kinetic and inferentially, the molecular equivalence of the volume and pHi-induced Amphiuma erythrocyte Na/H exchanger(s), indicated that the apparent Na affinity of the pH activated cells is four times greater than that of shrunken cells. The apparent Vmax is also higher (two times) in the pH activated cells, suggesting the involvement of two distinct populations of the transporter in pH and volume regulation. However, when analyzed in terms of a bisubstrate model, the same data are consistent with the conclusion that both pH and volume regulatory functions are mediated by the same transport protein. Taken together, these data support the conclusion that volume and pH are regulated by the same effector (Na/H exchanger) under the control of as yet unidentified, distinct and cross inhibitory volume and pH sensing mechanisms.  相似文献   

2.
It is not known whether the activation of Na/H exchange by shrinkage in dog red cells is due to the packing of cell contents or a change in cell configuration. To make this distinction we prepared resealed ghosts that resembled intact cells in hemoglobin concentration and surface area, but had one-third their volume. A shrinkage-induced, amiloride-sensitive Na flux in the ghosts was activated at a much smaller volume in the ghosts than in the intact cells, but at the same concentration (by weight) of dry solids in both preparations. Na/H exchange in ghosts containing a mixture of 40% albumin and 60% hemoglobin (weight/weight) was activated by osmotic shrinkage at a dry solid concentration similar to that of intact cells or of ghosts containing only hemoglobin. We conclude that the process of Na/H exchange activation by cell shrinkage originates with an increase in the concentration of intracellular protein and not with a change in membrane configuration or tension. The macromolecular crowding that accompanies the reduction in cell volume probably alters the activities of key enzymes that in turn modulate the Na/H exchanger.  相似文献   

3.
Na+/H+ exchangers (NHEs) are ubiquitous membrane proteins that catalyze the exchange of Na+ for H+ and are critical in pH and cell volume regulation, as well as osmotolerance. In this study, we identify and characterize a novel NHE, TgNHE2, in Toxoplasma gondii. Immunofluorescence studies show that TgNHE2 is localized to the rhoptries, secretory organelles involved in invasion. TgNHE2 is the first intracellular NHE to be characterized in a protozoan parasite and its localization suggests possible roles for the rhoptries in osmotolerance and/or as secretory lysosomes-like granules.  相似文献   

4.
P Vigne  C Frelin  M Lazdunski 《Biochimie》1985,67(1):129-135
A membrane mechanism that catalyses the electroneutral exchange of Na+ for H+ has recently been characterized in a variety of eukaryotic cells. This exchanger is inhibited by amiloride, a potent diuretic drug. It has been implicated in a number of important physiological processes such as the regulation of the intracellular pH, the reabsorption of Na+ by the renal proximal tubule, the regulation of the cell volume and the fertilization of the sea urchin egg. The Na+/H+ exchanger seems able to mediate the action of growth factors. The biochemical and pharmacological properties of the Na+/H+ exchange system are reviewed. They are very similar in the different cell types that have been studied. Yet the Na+/H+ exchange system can fulfil different functions in different cell types depending i) on its properties of interaction with intracellular H+, ii) on the presence of other membrane structures that are involved in the maintenance of transmembrane Na+ and H+ gradients and iii) on the presence of extracellular messages that modify its catalytic properties and, among them, its interaction with internal H+.  相似文献   

5.
Zhou HY  Han CY  Wang XL 《生理学报》2006,58(2):136-140
心肌缺血损伤过程中,胞内Na^+、ATP及pH都出现明显变化。钠/钙交换对心肌细胞的钙平衡起重要的调节作用。本实验采用膜片钳全细胞记录豚鼠心室肌细胞钠/钙交换电流,研究温度和胞内Na^+、ATP及pH对钠/钙交换双向电流的影响。结果表明,温度从22℃升至34℃,钠/钙交换电流增大约4倍,而pH值的改变对钠/钙交换双向电流没有明显的影响。在22~24℃时,同时耗竭胞内ATP和胞内酸化对钠/钙交换双向转运功能影响程度小;而在34—37℃时,同时耗竭胞内ATP和胞内酸化能抑制钠/钙交换双向电流的外向和内向成分,且内向成分抑制程度高于外向成分抑制程度。表明同时耗竭胞内ATP和胞内酸化对钠/钙交换的作用具有温度依赖性。胞内Na^+超载能使钠/钙交换电流的外向成分增加,但不增加或减少内向电流(即正向转运)成分。因此,胞内酸化及耗竭胞内ATP损伤细胞排钙机制和胞内钠超载通过钠/钙反向交换引起钙内流是引起心肌细胞钙超载的两个独立的重要因素。  相似文献   

6.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the increase in cytoplasmic pH (by 0.2-0.3 pH unit) upon addition of growth factors (alpha-thrombin and insulin) to G0/G1-arrested cells. Indeed, these two processes are Na+-dependent and amiloride-sensitive; furthermore, CCl39-derived mutant cells, lacking the Na+/H+ exchange activity, are greatly impaired in pHi regulation and present no cytoplasmic alkalinization upon growth factor addition. In wild type G0-arrested cells, the amplitude of the mitogen-induced alkalinization reflects directly the activity of the Na+/H+ antiport, and is tightly correlated with the magnitude of DNA synthesis stimulation. Therefore, we conclude that cytoplasmic pH, regulated by the Na+/H+ antiport, is of crucial importance in the mitogenic response.  相似文献   

7.
By virtue of their electroneutral exchange of intracellular H+ for extracellular Na+, the Na+/H+ exchangers (NHE1-NHE8) play a pivotal role in many physiological processes. This review focuses on the ubiquitous plasma membrane isoform, NHE1. Particular attention is given to the roles and regulation of NHE1 in erythrocytes, in their own right and as model systems, but pertinent findings from non-erythroid cells are also discussed. NHE1 plays a key role in the regulation of cell volume and pH, and consequently in the control of such diverse processes as blood O2/CO2 transport, and cell proliferation, motility, and survival. Disturbances in NHE1 function are involved in important pathological states such as hypoxic cell damage and cancer development. NHE1 has a predicted topology of 12 transmembrane domains, and a hydrophilic C-terminus thought to be the major site for NHE1 regulation. NHE1 is highly conserved throughout the vertebrate phylum, particularly in the transmembrane region and the proximal part of the C-terminus. In non-erythroid, and probably also in erythroid cells, this part of the hydrophilic C-terminus interacts with multiple binding partners important for NHE1 function. Erythrocyte NHE1s from mammalian, amphibian, and teleost species are activated by cell shrinkage, decreased pH(i), inhibition of Ser/Thr protein phosphatases, and activation of Ser/Thr protein kinases, i.e., many of the stimuli activating NHE1 in non-erythroid cells. In erythrocytes of many lower vertebrates, NHE1 is activated during hypoxia and is an important modulator of hemoglobin oxygen affinity. Sensitivity of NHE1 to oxygenation status has recently been described also in non-erythroid mammalian cells.  相似文献   

8.
The comparative importance of the release of intracellular ionic calcium, Na+/H+ exchange and cytosolic alkalosis as activator signals was studied on the development of amino acid uptake at fertilization in sea urchin eggs. We show that, once stimulated, the rate of valine uptake is greatly dependent upon intracellular pH. Suppression of the Na+/H+ exchange at the time of activation, by applying ionophore (A23187) in sodium-free artificial sea water (ONaASW), inhibits the development of valine influx. This cannot be restored by a further (30 min later) alkalosis by transferring eggs into sea water. Suppressing the alkalosis in the presence of Na+/H+ exchange at fertilization by simultaneous addition of acid into sea water results in activation of the amino acid carrier which exhibits an increased rate of transport as soon as the eggs are replaced in sea water at pH 8.0. The absence of alkalosis in eggs activated in ONaASW can be counterbalanced either by adding NH4Cl 10 mM or by transfer into ASW at pH 9.0 at activation. Ammonia-treated eggs absorbed amino acid as controls, whereas eggs in sea water at pH 9.0 failed to develop a valine uptake system, suggesting that ammonia can completely replace the effect of Na+/H+ exchange. Furthermore, addition of NH4Cl immediately before fertilization conceals the Na+/H+ exchange but stimulates valine uptake as in controls. These data suggest that: the occurrence of the intracellular calcium increase alone is not sufficient for the develpment of the amino acid transport system; cell alkalinization at fertilization derives from the cytoplasmic membrane-located Na+/H+ exchange and an inward movement of protons into a cortical acidic compartment, which is discussed.  相似文献   

9.
Previous studies have documented the activation of Na+/H+ exchange in A431 cells by the addition of epidermal growth factor or serum (Rothenberg et al., 1983b). Here we show that exposure of A4 31 cells to medium of increased osmolarity also leads to activation of Na+/H+ exchange and to an increase in intracellular pH (pHi), which under a variety of conditions displays similar kinetics to that observed upon addition of mitogens to the cells. Measurements of cell volume using the 3-0-methylglucose equilibration technique clearly show that mitogens do not activate Na+/H+ exchange by an osmotic mechanism (i.e., a decrease in cell volume). In fact, mitogens can induce further intracellular alkalinization if added to cells which have been shrunken in hypertonic medium. Activation of the Na+/H+ antiport does not lead to an obligatory change in pHi. Addition of epidermal growth factor of hypertonic solution to A431 cells in bicarbonate buffer activates Na+/H+ exchange without a concomitant increase in pHi. Under these conditions the increased proton efflux via Na+/H+ exchange must therefore be compensated by other mechanisms that control cytoplasmic pH.  相似文献   

10.
We investigated the role of intracellular pH (pH(i)) and Na/H exchange in cell death in human pulmonary artery endothelial cells (HPAEC) following a metabolic insult (inhibition-oxidative phosphorylation, glycolysis). Metabolic inhibition in medium at pH 7. 4 decreased viability (0-15% live cells) over 6 h. Cell death was attenuated by maneuvers that decreased pH(i) and inhibited Na/H exchange (acidosis, Na/H antiport inhibitors). In contrast, cell death was potentiated by maneuvers that elevated pH(i) or increased Na/H exchange (monensin, phorbol ester treatment) before the insult. HPAEC demonstrated a biphasic pH(i) response following a metabolic insult. An initial decrease in pH(i) was followed by a return to baseline over 60 min. Maneuvers that protected HPAEC and inhibited Na/H exchange (acidosis, Na(+)-free medium, antiport inhibitors) altered this pattern. pH(i) decreased, but no recovery was observed, suggesting that the return of pH(i) to normal was mediated by antiport activation. Although Na/H antiport activity was reduced (55-60% of control) following a metabolic insult, the cells still demonstrated active Na/H exchange despite significant ATP depletion. Phorbol ester pretreatment, which potentiated cell death, increased Na/H antiport activity above the level observed in monolayers subjected to a metabolic insult alone. These results demonstrate that HPAEC undergo a pH-dependent loss of viability linked to active Na/H exchange following a metabolic insult. Potentiation of cell death with phorbol ester treatment suggests that this cell death pathway involves protein kinase C-mediated phosphorylation events.  相似文献   

11.
Ion-sensitive microelectrodes and current-voltage analysis were used to study intracellular pH (pHi) regulation and its effects on ionic conductances in the isolated epithelium of frog skin. We show that pHi recovery after an acid load is dependent on the operation of an amiloride-sensitive Na+/H+ exchanger localized at the basolateral cell membranes. The antiporter is not quiescent at physiological pHi (7.1-7.4) and, thus, contributes to the maintenance of steady state pHi. Moreover, intracellular sodium ion activity is also controlled in part by Na+ uptake via the exchanger. Intracellular acidification decreased transepithelial Na+ transport rate, apical Na+ permeability (PNa) and Na+ and K+ conductances. The recovery of these transport parameters after the removal of the acid load was found to be dependent on pHi regulation via Na+/H+ exchange. Conversely, variations in Na+ transport were accompanied by changes in pHi. Inhibition of Na+/K+ ATPase by ouabain produced covariant decreases in pHi and PNa, whereas increases in Na+ transport, occurring spontaneously or after aldosterone treatment, were highly correlated with intracellular alkalinization. We conclude that cytoplasmic H+ activity is regulated by a basolateral Na+/H+ exchanger and that transcellular coupling of ion flows at opposing cell membranes can be modulated by the pHi-regulating mechanism.  相似文献   

12.
Na/H exchange in cultured chick heart cells. pHi regulation   总被引:7,自引:6,他引:1       下载免费PDF全文
The purpose of this study was to establish the existence of Na/H exchange in cardiac muscle and to evaluate the contribution of Na/H exchange to pHi regulation. The kinetics of pHi changes in cultured chick heart cells were monitored microfluorometrically with 6-carboxyfluorescein and correlated with Nai content changes analyzed by atomic absorption spectrophotometry; transmembrane H+ movements were evaluated under pH stat conditions. After induction of an intracellular acid load by pretreatment with NH4Cl, a regulatory cytoplasmic alkalinization occurred with a t1/2 of 2.9 min. pHi regulation required external Na+ and was concomitant with transmembrane H+ extrusion as well as a rapid rise in Nai content in an Na/H ratio of 1:1. Microelectrode recordings of membrane potential demonstrated directly the electroneutral character of pHi regulation. Acid-induced net Na+ uptake could be either stimulated by further decreasing pHi or inhibited by decreasing pHo; Na+ uptake was unaffected by tetrodotoxin (10 micrograms/ml), quinidine (10(-3) M), DIDS (10(-4) M), Clo-free solution, or HCO3-free solution. Amiloride (10(-3) M) maximally inhibited both pHi regulation and Na+ uptake; the ID50 for amiloride inhibition of Na+ uptake was 3 microM. Nao-dependent H+ extrusion showed half-maximal activation at 15 mM Nao; Li+, but not K+ or choline+, could substitute for Na+ to support H+ extrusion. Cao-free solution also stimulated acid-induced Na+ uptake. We conclude that pHi regulation following an acid load in cardiac muscle cells is by an amiloride-sensitive, electroneutral Na/H exchange. Stimulation of Na/H exchange up to 54 pmol/cm2 X s indicates the rapidity of this exchange across cardiac cell membranes. Na/H exchange may also participate in steady state maintenance of pHi.  相似文献   

13.
激活细胞膜Na^+/H^+交换对心肌缺血再灌注损伤的影响   总被引:2,自引:0,他引:2  
在离体大鼠等容收缩心脏灌流模型上,观察激活细胞膜Na+/H+交换对心肌缺血后再灌注性损伤的影响。采用经典NH4Cl负荷方法以激活细胞膜Na+/H+交换,结果表明,激活Na+/H+交换加重缺血后再灌注心脏血液动力学障碍,增加冠脉流出液中乳酸脱氢酶的活性,并使心肌组织中Na+、Ca2+超负荷及K+丢失加重。提示细胞膜Na+/H+交换是心肌缺血后再灌注损伤的发病机理之一。  相似文献   

14.
Activation of the Na(+)/H(+) exchanger may play an important role in the development of cardiac hypertrophy. Isolated ventricular myocyte studies have suggested that angiotensin II (AII) has direct positive inotropic effect caused by intracellular alkalinization due to increased Na(+)/H(+) exchange, but whether this occurs in the whole heart is unknown. Consequently, we have used non-invasive 31P NMR spectroscopy to determine whether AII stimulation alters energetics or intracellular pH (pH(i)) in the intact beating rabbit heart. Heart rate (HR) and developed pressure (DP) were recorded continuously in isolated perfused rabbit hearts, simultaneously with pH(i) and high energy phosphate metabolite levels measured using 31P NMR spectroscopy. AII (11 nM) increased developed pressure by 14+/-2 mmHg (P<0.05) and increased pH(i) by 0.08+/-0.03 pH units (P<0.05, n=6). There were no significant changes in myocardial phosphocreatine (PCr), ATP or Pi concentrations throughout the protocol. Inhibition of Na(+)/H(+) exchange with 1 microM Hoe642 (n=7) abolished the increase in pH(i), but did not prevent the increase in developed pressure, caused by AII. Inhibition of protein kinase C (PKC) using 25 microM chelerythrine chloride prevented the positive inotropic and alkalinizing effects of AII (n=5). We conclude that the positive inotropic effect of AII is associated with, but not caused by, a decreased proton concentration due to stimulation of Na(+)/H(+) exchange in the whole rabbit heart.  相似文献   

15.
Apoptosis results in cell shrinkage and intracellular acidification, processes opposed by the ubiquitously expressed NHE1 Na(+)/H(+) exchanger. In addition to mediating Na(+)/H(+) transport, NHE1 interacts with ezrin/radixin/moesin (ERM), which tethers NHE1 to cortical actin cytoskeleton to regulate cell shape, adhesion, motility, and resistance to apoptosis. We hypothesize that apoptotic stress activates NHE1-dependent Na(+)/H(+) exchange, and NHE1-ERM interaction is required for cell survival signaling. Apoptotic stimuli induced NHE1-regulated Na(+)/H(+) transport, as demonstrated by ethyl-N-isopropyl-amiloride-inhibitable, intracellular alkalinization. Ectopic NHE1, but not NHE3, expression rescued NHE1-null cells from apoptosis induced by staurosporine or N-ethylmaleimide-stimulated KCl efflux. When cells were subjected to apoptotic stress, NHE1 and phosphorylated ERM physically associated within the cytoskeleton-enriched fraction, resulting in activation of the pro-survival kinase, Akt. NHE1-associated Akt activity and cell survival were inhibited in cells expressing ERM binding-deficient NHE1, dominant negative ezrin constructs, or ezrin mutants with defective binding to phosphoinositide 3-kinase, an upstream regulator of Akt. We conclude that NHE1 promotes cell survival by dual mechanisms: by defending cell volume and pH(i) through Na(+)/H(+) exchange and by functioning as a scaffold for recruitment of a signalplex that includes ERM, phosphoinositide 3-kinase, and Akt.  相似文献   

16.
Lactacidosis is a common feature of ischaemic brain tissue, but its role in ischaemic neuropathology is still not fully understood. Na(+)/H(+) exchange, a mechanism involved in the regulation of intracellular pH (pH(i)), is activated by low pH(i). The role of Na(+)/H(+) exchange subtype 1 was investigated during extracellular acidification and subsequent pH recovery in the absence and presence of (4-isopropyl-3-methylsulphonyl-benzoyl)-guanidine methanesulfonate (HOE642, Cariporid), a new selective and powerful inhibitor of the Na(+)/H(+) exchanger subtype 1 (NHE-1). It was compared for normoxia and hypoxia in two glioma cell lines (C6 and F98). pH(i) was monitored by fluorescence spectroscopy using the intracellularly trapped pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Alterations in glial cell metabolism were characterized using high-resolution (1)H, (13)C and (31)P NMR spectroscopy of perchloric acid extracts. NHE-1 contributed to glial pH regulation, especially at pathologically low pH(i) values. NHE-1 inhibition with HOE642 during acidification caused exacerbated metabolic disorders which were prolonged during extracellular pH recovery. However, NHE-1 inhibition during hypoxia protected the energy state of glial cells.  相似文献   

17.
18.
It is well known that chemotactic agents active Na(+)/H(+) exchanger, increasing intracellular pH of neutrophils, but their effect on bicarbonate transporters have not been established yet. To study the effect of fMLP on the activity of Cl(-)/HCO(3)(-) exchange, the rate of pH recovery after acute Cl(-) readmission in cell subjected to an alkaline load by CO(2) washout in a Cl-free medium was measured. The activity of the exchanger was reduced to 72% of control when cells were pre-incubated for 5 min with 0.1 μM fMLP and reached 48% of control in steady state after acute exposure. After extracellular bicarbonate or TMA addition the rate recovery of intracellular pH was reduce at 72% and at 84%, respectively. The inhibitory effect on the intracellular pH recovery was not affected by blockers of Na(+)/H(+) exchange. We conclude from these studies that an increase of pH(i) produced for this chemotactic agent is facilitated by the simultaneous activation of Na(+)/H(+) exchange and inhibition of Cl(-)/HCO(3)(-) exchange in neutrophils.  相似文献   

19.
A whole-cell model of a macrophage (mphi) is developed to simulate pH and volume regulation during a NH4Cl prepulse challenge. The cell is assumed spherical, with a plasma membrane that separates the cytosolic and extracellular bathing media. The membrane contains background currents for Na+, K+ and Cl-, a Na(+)-K+ pump, a V-type H(+)-extruder (V-ATPase), and a leak pathway for NH4+. Cell volume is controlled by instantaneous osmotic balance between cytosolic and extracellular osmolytes. Simulations reveal that the mphi model can mimic alterations in measured pH(i) and cell volume (Vol(i)) data during and after delivery of an ammonia prepulse, which induces an acid load within the cell. Our analysis indicates that there are substantial problems in quantifying transporter-mediated H+ efflux solely from experimental observations of pH(i) recovery, as is commonly done in practice. Problems stemming from the separation of effects arise, since there is residual NH4+ dissociation to H+ inside the mphi during pH(i) recovery, as well as, proton extrusion via the V-ATPase. The core assumption of conventional measurement techniques used to estimate the H+ extrusion current (I(H)) is that the recovery phase is solely dependent on transporter-mediated H+ extrusion. However, our model predictions suggest that there are major problems in using this approach, due to the complex interactions between I(H), NH3/NH4+ buffering and NH3/NH4+ efflux during the active acid extrusion phase. That is, the conventional buffer capacity-based I(H) estimation must also take into account the perturbation that a prepulse challenge brings to the cytoplasmic acid buffer itself. The importance of this whole-cell model of mphipH(i) and volume regulation lies in its potential for extension to the characterization of several other types of non-excitable cells, such as the microglia (brain macrophage) and the T-lymphocyte.  相似文献   

20.
Swelling of pig red cells leads to an increase in a chloride-dependent K flux which can be potentiated by cAMP, whereas cell shrinking causes a selective increase in Na movement which is mediated by a Na/H exchanger. We examined the influence of adenosine and adenosine receptor agonists on the volume-sensitive, ouabain-resistant, chloride-dependent K flux, referred to as Rb flux and volume-activated Na/H exchange pathway. It was found that adenosine and adenosine receptor agonists inhibited the Rb flux. N6-cyclohexyl adenosine (CHA) has been found to be the most potent inhibitor with EC50 of approximately 4.5 microM followed by 2-chloroadenosine (Cl-ado) with EC50 of approximately 27 microM and 5'-(N-ethyl)-carboxamido-adenosine (NECA) with EC50 of approximately 185 microM. CHA also inhibits the cAMP-stimulated Rb flux. However, CHA does not alter the basal intracellular cAMP level nor the intracellular cAMP content raised by exogenously added cAMP. In contrast to the adenosine agonist action on the Rb flux, Na/H exchange, which is activated upon cell shrinkage, exhibits a slight stimulation in response to CHA. These findings suggest that the presence of A1 adenosine receptors on the surface of red cells influences the regulation of volume-activated ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号