首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Pathogenesis in alcoholic liver disease (ALD) is complicated and multifactorial but clearly involves oxidative stress and inflammation. Currently, conflicting reports exist regarding the role of endoplasmic reticulum (ER) stress in the etiology of ALD. The glucose-regulated protein 78 (GRP78) is the ER homolog of HSP70 and plays a critical role in the cellular response to ER stress by serving as a chaperone assisting protein folding and by regulating the signaling of the unfolded protein response (UPR). Comprising three functional domains, an ATPase, a peptide-binding, and a lid domain, GRP78 folds nascent polypeptides via the substrate-binding domain. Earlier work has indicated that the ATPase function of GRP78 is intrinsically linked and essential to its chaperone activity. Previous work in our laboratory has indicated that GRP78 and the UPR are not induced in a mouse model of ALD but that GRP78 is adducted by the lipid electrophiles 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) in vivo. As impairment of GRP78 has the potential to contribute to pathogenesis in ALD, we investigated the functional consequences of aldehyde adduction on GRP78 function. Identification of 4-HNE and 4-ONE target residues in purified human GRP78 revealed a marked propensity for Lys and His adduction within the ATPase domain and a relative paucity of adduct formation within the peptide-binding domain. Consistent with these findings, we observed a concomitant dose-dependent decrease in ATP-binding and ATPase activity without any discernible impairment of chaperone function. Collectively, our data indicate that ATPase activity is not essential for GRP78-mediated chaperone activity and is consistent with the hypothesis that ER stress does not play a primary initiating role in the early stages of ALD.  相似文献   

2.
Treatment of developing bean cotyledons with the inhibitor of N-glycosylation tunicamycin enhanced the synthesis of at least two polypeptides with molecular mass 78 kDa and 97 kDa. Pulse-chase experiments and subcellular fractionation indicated that these are endoplasmic reticulum (ER) residents. The 78 kDa protein is a major component of the ER protein fraction and, by N-terminal sequencing, was identified as a bean homolog of the mammalian 78 kDa glucose-regulated protein (GRP78). This is a molecular chaperone that is probably involved in the folding and oligomerization of several animal and yeast proteins in the ER. When newly synthesized storage glycoproteins phaseolin, phytohemagglutinin or alpha-amylase inhibitor were immunoprecipitated from an ER preparation of tunicamycin-treated tissue, the GRP78 homolog was always co-precipitated. Bound GRP78 homolog could be released by ATP treatment. These results suggest that, at least when glycosylation is inhibited, this protein plays a role in the early stages of the synthesis of vacuolar storage proteins.  相似文献   

3.
Glucose regulated protein 78 (GRP78) has long been recognized as a molecular chaperone in the endoplasmic reticulum (ER) and can be induced by the ER stress response. Besides its location in the ER, GRP78 has been found to be present in cell plasma membrane, cytoplasm, mitochondria, nucleus as well as cellular secretions. GRP78 is implicated in tumor cell proliferation, apoptosis resistance, immune escape, metastasis and angiogenesis, and its elevated expression usually correlates with a variety of tumor microenvironmental stresses, including hypoxia, glucose deprivation, lactic acidosis and inflammatory response. GRP78 protein acts as a centrally located sensor of stress, which feels and adapts to the alteration in the tumor microenvironment. This article reviews the potential contributions of GRP78 to the acquisition of cancer hallmarks based on intervening in stress responses caused by tumor niche alterations. The paper also introduces several potential GRP78 relevant targeted therapies.  相似文献   

4.
GRP78 (glucose-regulated protein of 78 kDa) is traditionally regarded as a major ER (endoplasmic reticulum) chaperone facilitating protein folding and assembly, protein quality control, Ca(2+) binding and regulating ER stress signalling. It is a potent anti-apoptotic protein and plays a critical role in tumour cell survival, tumour progression and angiogenesis, metastasis and resistance to therapy. Recent evidence shows that GRP78 can also exist outside the ER. The finding that GRP78 is present on the surface of cancer but not normal cells in vivo represents a paradigm shift on how GRP78 controls cell homoeostasis and provides an opportunity for cancer-specific targeting. Cell-surface GRP78 has emerged as an important regulator of tumour cell signalling and viability as it forms complexes with a rapidly expanding repertoire of cell-surface protein partners, regulating proliferation, PI3K (phosphoinositide 3-kinase)/Akt signalling and cell viability. Evidence is also emerging that GRP78 serves as a receptor for viral entry into host cells. Additionally, a novel cytosolic form of GRP78 has been discovered prominently in leukaemia cells. These, coupled with reports of nucleus- and mitochondria-localized forms of GRP78, point to the previously unanticipated role of GRP78 beyond the ER that may be critical for cell viability and therapeutic targeting.  相似文献   

5.
The endoplasmic reticulum (ER)-localized chaperone protein, GRP78-BiP, is involved in the folding and oligomerization of secreted and membrane proteins, including the simian virus 5 hemagglutinin-neuraminidase (HN) glycoprotein. To understand this interaction better, we have constructed a series of HN mutants in which specific portions of the extracytoplasmic domain have been deleted. Analysis of these mutant polypeptides expressed in CV-1 cells have indicated that GRP78-BiP binds to selective sequences in HN and that there exists more than a single site of interaction. Mutant polypeptides have been characterized that are competent and incompetent for association with GRP78-BiP. These mutants have been used to show that the induction of GRP78-BiP synthesis due to the presence of nonnative protein molecules in the ER is dependent on GRP78-BiP complex formation with its substrates. These studies have implications for the function of the GRP78-BiP protein and the mechanism by which the gene is regulated.  相似文献   

6.
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy.  相似文献   

7.
Cripto is a multifunctional cell surface protein with important roles in vertebrate embryogenesis and the progression of human tumors. While Cripto has been shown to modulate multiple signaling pathways, its binding partners do not appear to fully explain its molecular actions. Therefore, we conducted a screen aimed at identifying novel Cripto-interacting proteins. This screen led to our identification of glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone that is also expressed at the surfaces of tumor cells. Here we demonstrate that Cripto and GRP78 interact at the cell surfaces of multiple cell lines and that their interaction is independent of prior association within the ER. Interestingly, short hairpin RNA knockdown of endogenous GRP78 resulted in enhanced transforming growth factor β (TGF-β) signaling, indicating that like Cripto, GRP78 inhibits this pathway. We further show that when coexpressed, GRP78 and Cripto collaborate to antagonize TGF-β responses, including Smad phosphorylation and growth inhibition of prostate cancer cells grown under anchorage-dependent or -independent conditions. Finally, we provide evidence that cells coexpressing GRP78 and Cripto grow much more rapidly in soft agar than do cells expressing either protein individually. Together, our results indicate that these proteins bind at the cell surface to enhance tumor growth via the inhibition of TGF-β signaling.  相似文献   

8.
9.
Hyperhomocysteinemia, a risk factor for vascular disease, injures endothelial cells through undefined mechanisms. We previously identified several homocysteine-responsive genes in cultured human vascular endothelial cells, including the endoplasmic reticulum (ER)-resident molecular chaperone GRP78/BiP. Here, we demonstrate that homocysteine induces the ER stress response and leads to the expression of a novel protein, Herp, containing a ubiquitin-like domain at the N terminus. mRNA expression of Herp was strongly up-regulated by inducers of ER stress, including mercaptoethanol, tunicamycin, A23187, and thapsigargin. The ER stress-dependent induction of Herp was also observed at the protein level. Immunochemical analyses using Herp-specific antibodies indicated that Herp is a 54-kDa, membrane-associated ER protein. Herp is the first integral membrane protein regulated by the ER stress response pathway. Both the N and C termini face the cytoplasmic side of the ER; this membrane topology makes it unlikely that Herp acts as a molecular chaperone for proteins in the ER, in contrast to GRP78 and other ER stress-responsive proteins. Herp may, therefore, play an unknown role in the cellular survival response to stress.  相似文献   

10.
Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR.  相似文献   

11.
GRP78 is a major endoplasmic reticulum chaperone as well as a master regulator of the unfolded protein response. In addition to playing an essential role in early embryonic development, recent studies have emerged specifically implicating GRP78 and chaperone integrity in the aging process and age-related diseases. Another exciting discovery is the regulation of GRP78 by insulin/IGF-1 signaling pathways impacting cell proliferation and survival. Mouse models of cancer, in combination with cell culture studies, validate the critical role of GRP78 in tumorigenesis and tumor angiogenesis. Further, these studies demonstrate the ability of GRP78 to suppress oncogenic PI3K/AKT signaling. The discovery of cell surface GRP78, in cancer cells and cells undergoing ER stress, presents a novel therapeutic strategy.  相似文献   

12.
13.
Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) molecular chaperone that belongs to the heat shock protein 70 family. GRP78 is also present on the cell surface membrane of trophoblastic cells, where it is associated with invasive or fusion properties of these cells. Impaired mechanism of GRP78 relocation from ER to the cell surface was observed in preeclamptic cytotrophoblastic cells (CTB) and could take part in the pathogenesis of preeclampsia. In this study, we have investigated whether prostate apoptosis response 4 (Par-4), a protein identified as a partner of GRP78 relocation to the cell surface in prostate cancer cells, is present in trophoblastic cells and is involved in the translocation of GRP78 to the cell surface of CTB. Par-4 is indeed present in trophoblastic cells and its expression correlates with expression of membrane GRP78. Moreover, overexpression of Par-4 led to an increase of cell surface expression of GRP78 and decreased Par-4 gene expression reduced cell surface localization of GRP78 confirming a role of Par-4 in relocation of GRP78 from ER to the cell surface. Accordingly, invasive property was modified in these cells. In conclusion, we show that Par-4 is expressed in trophoblastic cells and is involved in transport of GRP78 to the cell surface and thus regulates invasive property of extravillous CTB.  相似文献   

14.
15.
The ubiquitously expressed molecular chaperone GRP78 (78 kDa glucose-regulated protein) generally localizes to the ER (endoplasmic reticulum). GRP78 is specifically induced in cells under the UPR (unfolded protein response), which can be elicited by treatments with calcium ionophore A23187 and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor TG (thapsigargin). By using confocal microscopy, we have demonstrated that GRP78 was concentrated in the perinuclear region and co-localized with the ER marker proteins, calnexin and PDI (protein disulphide-isomerase), in cells under normal growth conditions. However, treatments with A23187 and TG led to diminish its ER targeting, resulting in redirection into a cytoplasmic vesicular pattern, and overlapping with the mitochondrial marker MitoTracker. Cellular fractionation and protease digestion of isolated mitochondria from ER-stressed cells suggested that a significant portion of GRP78 is localized to the mitochondria and is protease-resistant. Localizations of GRP78 in ER and mitochondria were confirmed by using immunoelectron microscopy. In ER-stressed cells, GRP78 mainly localized within the mitochondria and decorated the mitochondrial membrane compartment. Submitochondrial fractionation studies indicated further that the mitochondria-resided GRP78 is mainly located in the intermembrane space, inner membrane and matrix, but is not associated with the outer membrane. Furthermore, radioactive labelling followed by subcellular fractionation showed that a significant portion of the newly synthesized GRP78 is localized to the mitochondria in cells under UPR. Taken together, our results indicate that, at least under certain circumstances, the ER-resided chaperone GRP78 can be retargeted to mitochondria and thereby may be involved in correlating UPR signalling between these two organelles.  相似文献   

16.
Chinese hamster ovary (CHO) cells are regarded as one of the most commonly used mammalian hosts, which decreases the productivity due to loss in culture viability. Overexpressing antiapoptosis genes in CHO cells was developed as a means of limiting cell death upon exposure to environmental insults. Glucose‐regulated protein 78 (GRP78) is traditionally regarded as a major ER chaperone that participates in protein folding and other cell processes. It is also a potent antiapoptotic protein and plays a critical role in cell survival, proliferation, and metastasis. In this study, the impact of GRP78 on CHO cells in response to environmental insults such as serum deprivation and oxidative stress was investigated. First, it was confirmed that CHO cells were very sensitive to environmental insults. Then, GRP78 overexpressing CHO cell line was established and exposed to serum deprivation and H2O2. Results showed that GRP78 engineering increased the viability and decreased the apoptosis of CHO cells. The survival advantage due to GRP78 engineering could be mediated by suppression of caspase‐3 involved in cell death pathways in stressed cells. Besides, GRP78 engineering also enhanced yields of antibody against transferrin receptor in CHO cells. GRP78 should be a potential application in the biopharmaceutical industries.  相似文献   

17.
Although the development of cellular hypertrophy is widely believed to involve Ca(2+) signaling, potential supporting roles for sequestered Ca(2+) in this process have not been explored. H9c2 cardiomyocytes respond to arginine vasopressin with an initial mobilization of Ca(2+) stores and reduced rates of mRNA translation followed by repletion of Ca(2+) stores, up-regulation of translation beyond initial rates, and the development of hypertrophy. Rates of synthesis of the endoplasmic reticulum (ER) chaperones, GRP78 and GRP94, were found to increase preferentially at early times of vasopressin treatment. Total GRP78 content increased 2- to 3-fold within 8 h after which the chaperone was subject to post-translational modification. Preferential synthesis of GRP78 and the increase in chaperone content both occurred at pM vasopressin concentrations and were abolished at supraphysiologic Ca(2+) concentrations. Co-treatment with phorbol myristate acetate decreased vasopressin-dependent Ca(2+) mobilization and slowed appearance of new GRP78 molecules in response to the hormone, whereas 24 h pretreatment with phorbol ester prolonged vasopressin-dependent Ca(2+) mobilization and further increased rates of GRP78 synthesis in response to the hormone. Findings did not support a role for newly synthesized GRP78 in translational up-regulation by vasopressin. However up-regulation, which does not depend on Ca(2+) sequestration, appeared to expedite chaperone expression. This report provides the first evidence that a Ca(2+)-mobilizing hormone at physiologic concentrations signals increased expression of GRP78. Translational tolerance to depletion of ER Ca(2+) stores, typifying a robust ER stress response, did not accompany vasopressin-induced hypertrophy.  相似文献   

18.
19.
Phosphorylation of eukaryotic initiation factor-2 (eIF2) by pancreatic eIF2 kinase (PEK), induces a program of translational expression in response to accumulation of malfolded protein in the endoplasmic reticulum (ER). This study addresses the mechanisms activating PEK, also designated PERK or EIF2AK3. We describe the characterization of two regions in the ER luminal portion of the transmembrane PEK that carry out distinct functions in the regulation of this eIF2 kinase. The first region mediates oligomerization between PEK polypeptides, and deletion of this portion of PEK blocked induction of eIF2 kinase activity. The second characterized region of PEK facilitates interaction with ER chaperones. In the absence of stress, PEK associates with ER chaperones GRP78 (BiP) and GRP94, and this binding is released in response to ER stress. ER luminal sequences flanking the transmembrane domain are required for GRP78 interaction, and deletion of this portion of PEK led to its activation even in the absence of ER stress. These results suggest that this ER chaperone serves as a repressor of PEK activity, and release of ER chaperones from PEK when misfolded proteins accumulate in the ER induces gene expression required to enhance the protein folding capacity of the ER.  相似文献   

20.
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (-)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号