首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Less than a decade old, single-molecule fluorescence of nucleic acids has rapidly become an important tool in the arsenal of biological probes. A variety of novel approaches to investigate conformational dynamics, catalytic mechanisms, folding pathways and protein-nucleic-acid interactions have recently been devised for nucleic acids using this technique. Combined with biomechanical tools and ensemble measurements, single-molecule fluorescence methods extend our ability to observe and understand biomolecules and complex biological processes.  相似文献   

2.
Single-molecule fluorescence methods for the study of nucleic acids.   总被引:9,自引:0,他引:9  
Single-molecule fluorescence methods and biomechanical tools provide exciting new opportunities to probe biochemical processes in unprecedented detail. The detection and spectroscopy of single fluorophores have recently been used to observe conformational changes and biochemical events involving nucleic acids. A number of fluorescence observables, including localization, quenching, polarization response and fluorescence resonance energy transfer, have been utilized. An exciting new opportunity of combining fluorescence methods and biomechanical tools to study the structural changes and functions of enzymes that participate in nucleic acid metabolism has also arisen.  相似文献   

3.
Nucleic acid motors comprise a variety of structurally, mechanistically and functionally very different enzymes. These motor proteins have in common the ability to directionally move DNA or RNA, or to move along DNA or RNA using a chemical energy source such as ATP. Recently, it became possible to study the action of a single motor on single DNA or RNA molecules in real time; this has provided unprecedented insight into the behavior and mechanism of these motors. As a result, the past few years have witnessed an enormous increase in such single-molecule studies of a variety of different motor systems. Particular highlights have included the investigation of the sequence-dependent behavior and helical tracking of motors, and the attainment of the ultimate (i.e. single base pair) resolution, which enables the detection of individual single base motor steps.  相似文献   

4.
DNA nanotechnology has seen large developments over the last 30 years through the combination of detection and discovery of DNAs, and solid phase synthesis to increase the chemical functionalities on nucleic acids, leading to the emergence of novel and sophisticated in features, nucleic acids-based biopolymers. Arguably, nanopores developed for fast and direct detection of a large variety of molecules, are part of a revolutionary technological evolution which led to cheaper, smaller and considerably easier to use devices enabling DNA detection and sequencing at the single-molecule level. Through their versatility, the nanopore-based tools proved useful biomedicine, nanoscale chemistry, biology and physics, as well as other disciplines spanning materials science to ecology and anthropology. This mini-review discusses the progress of nanopore- and hybridization-based DNA detection, and explores a range of state-of-the-art applications afforded through the combination of certain synthetically-derived polymers mimicking nucleic acids and nanopores, for the single-molecule biophysics on short DNA structures.  相似文献   

5.
6.
This note describes a simple tray in which large numbers of radiolabeled nucleic acid samples mounted on paper or glass-fiber disks can be subjected to various treatments prior to counting by liquid scintillation spectrometry. The tray is useful for analysis of samples from ultracentrifugal fractionation of nucleic acids, for direct sampling of RNA or DNA polymerase assays in vitro, and for analysis of nucleic acid labeling in bacterial cultures.  相似文献   

7.

Background

Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration.

Scope of review

We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems.

Major conclusions

Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines.

General significance

Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: “What is life?” This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.  相似文献   

8.
9.
Mitochondrial nucleic acids   总被引:3,自引:0,他引:3  
P Borst  L A Grivell 《Biochimie》1973,55(6):801-804
  相似文献   

10.
Extracellular nucleic acids   总被引:4,自引:0,他引:4  
Extracellular nucleic acids are found in different biological fluids in the organism and in the environment: DNA is a ubiquitous component of the organic matter pool in the soil and in all marine and freshwater habitats. Data from recent studies strongly suggest that extracellular DNA and RNA play important biological roles in microbial communities and in higher organisms. DNA is an important component of bacterial biofilms and is involved in horizontal gene transfer. In recent years, the circulating extracellular nucleic acids were shown to be associated with some diseases. Attempts are being made to develop noninvasive methods of early tumor diagnostics based on analysis of circulating DNA and RNA. Recent observations demonstrated the possibility of nucleic acids exchange between eukaryotic cells and extracellular space suggesting their participation in so far unidentified biological processes.  相似文献   

11.
Nucleic acids are an important class of biological macromolecules that carry out a variety of cellular roles. For many functions, naturally occurring DNA and RNA molecules need to fold into precise three-dimensional structures. Due to their self-assembling characteristics, nucleic acids have also been widely studied in the field of nanotechnology, and a diverse range of intricate three-dimensional nanostructures have been designed and synthesized. Different physical terms such as base-pairing and stacking interactions, tertiary contacts, electrostatic interactions and entropy all affect nucleic acid folding and structure. Here we review general computational approaches developed to model nucleic acid systems. We focus on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm. Appropriate choices in each of these key areas in nucleic acid modeling can effectively combine to aid interpretation of experimental data and facilitate prediction of nucleic acid structure.  相似文献   

12.
13.
14.
15.
16.
Aminopropyl nucleic acids (APNAs) are constitutionally simple nucleic acid alternatives with one stereogenic center per nucleotide, and with the potential to hybridize with RNA and to exert catalytic functions. We have developed a protecting group strategy to synthesize APNAs, although in a not very efficient way. Isolation and purification of APNAs proved to be difficult. Their structures might be more suited to function as potential catalytic polymers than as information systems that may evolve into RNA.  相似文献   

17.
The interaction of purine with DNA, tRNA, poly A, poly C, and poly A. poly U complex was investigated. In the presence of purine, the nucleic acids in coil form (such as denatured DNA, poly A and poly C in neutral solutions, or tRNA) have lower optical rotations. In addition, hydrodynamic studies indicate that in purine solutions the denatured DNA has a higher viscosity and a decreased sedimentation coefficient. These findings indicate that through interaction with purine, the bases along the poly-nucleotide chain are unstacked and are separated farther from each other, resulting in increased assymmetry (and possibly volume) of the whole polymer. Thus, the de-naturation effect of purine reported previously can be explained by this preferential interaction of purine with the bases of nucleic acids in coil form through a hydrophobic-costacking mechanism. Results from studies on optical rotation and helix-coil transition show that the interaction of purine is greater with poly A than with poly C. The influence of temperature, Mg++ concentration, ionic strength, and purine concentration on the effect of purine on nucleic acid conformation has also been investigated. In all these situations the unraveling of nucleic acid conformation occurs at much lower temperatures (20–40°C lower) in the presence of purine (0.2–0.6M).  相似文献   

18.
Computer programs are described which help during the collection and analysis of nucleic acid sequence data. They are written in FORTRAN and have been implemented on a PDP 11/60 computer.  相似文献   

19.
《Biophysical journal》2021,120(24):5454-5465
Despite their wide applications in soluble macromolecules, optical tweezers have rarely been used to characterize the dynamics of membrane proteins, mainly due to the lack of model membranes compatible with optical trapping. Here, we examined optical trapping and mechanical properties of two potential model membranes, giant and small unilamellar vesicles (GUVs and SUVs, respectively) for studies of membrane protein dynamics. We found that optical tweezers can stably trap GUVs containing iodixanol with controlled membrane tension. The trapped GUVs with high membrane tension can serve as a force sensor to accurately detect reversible folding of a DNA hairpin or membrane binding of synaptotagmin-1 C2AB domain attached to the GUV. We also observed that SUVs are rigid enough to resist large pulling forces and are suitable for detecting protein conformational changes induced by force. Our methodologies may facilitate single-molecule manipulation studies of membrane proteins using optical tweezers.  相似文献   

20.
Plant mitochondrial nucleic acids   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号