首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GLYT1 subtypes of glycine transporter are expressed in glia surrounding excitatory synapses in the mammalian CNS and may regulate synaptic glycine concentrations required for activation of the NMDA subtypes of glutamate receptor. In this report we demonstrate that the rate of glycine transport by GLYT1 is inhibited by arachidonic acid. The cyclo-oxygenase and lipoxygenase inhibitors indomethacin and nordihydroguaiaretic acid, and the protein kinase C inhibitor staurosporine, had no effect on the extent of arachidonic acid inhibition of transport, which suggests that the inhibitory effects of arachidonic acid result from a direct interaction with the transporter. In contrast to arachidonic acid, its amide derivative, anandamide, and the more stable analogue R1-methanandamide stimulate glycine transport. This stimulation is unlikely to be a secondary effect of cannabinoid receptor stimulation because the cannabinoid receptor agonist WIN 55 212-2 had no effect on transport. We suggest that the stimulatory effects of anandamide on GLYT1 are due to a direct interaction with the transporter.  相似文献   

2.
Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.  相似文献   

3.
The sodium- and chloride-coupled glycine neurotransmitter transporters (GLYTs) control the availability of glycine at glycine-mediated synapses. The mainly glial GLYT1 is the key regulator of the glycine levels in glycinergic and glutamatergic pathways, whereas the neuronal GLYT2 is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft. In this study, we report that stimulation of P2Y purinergic receptors with 2-methylthioadenosine 5'-diphosphate in rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes leads to the inhibition of GLYT2 and the stimulation of GLYT1 by a paracrine regulation. These effects are mainly mediated by the ADP-preferring subtypes P2Y(1) and P2Y(13) because the effects are partially reversed by the specific antagonists N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate and pyridoxal-5'-phosphate-6-azo(2-chloro-5-nitrophenyl)-2,4-disulfonate and are totally blocked by suramin. P2Y(12) receptor is additionally involved in GLYT1 stimulation. Using pharmacological approaches and siRNA-mediated protein knockdown methodology, we elucidate the molecular mechanisms of GLYT regulation. Modulation takes place through a signaling cascade involving phospholipase C activation, inositol 1,4,5-trisphosphate production, intracellular Ca(2+) mobilization, protein kinase C stimulation, nitric oxide formation, cyclic guanosine monophosphate production, and protein kinase G-I (PKG-I) activation. GLYT1 and GLYT2 are differentially sensitive to NO/cGMP/PKG-I both in brain-derived preparations and in heterologous systems expressing the recombinant transporters and P2Y(1) receptor. Sensitivity to 2-methylthioadenosine 5'-diphosphate by GLYT1 and GLYT2 was abolished by small interfering RNA (siRNA)-mediated knockdown of nitric-oxide synthase. Our data may help define the role of GLYTs in nociception and pain sensitization.  相似文献   

4.
Glycine is a coagonist at the N-methyl-D-aspartate receptor. Changes in extracellular glycine concentration may modulate N-methyl-D-aspartate receptor function and excitatory synaptic transmission. The GLYT1 glycine transporter is present in glia surrounding excitatory synapses, and plays a key role in regulating extracellular glycine concentration. We investigated the kinetic and other biophysical properties of GLYT1b, stably expressed in CHO cells, using whole-cell patch-clamp techniques. Application of glycine produced an inward current, which decayed within a few seconds to a steady-state level. When glycine was removed, a transient outward current was observed, consistent with reverse transport of accumulated glycine. The outward current was enhanced by elevating intracellular or lowering extracellular [Na(+)], and was modulated by changes in extracellular [glycine] and time of glycine application. We developed a model of GLYT1b function, which accurately describes the time course of the transporter current under a range of experimental conditions. The model predicts that glial uptake of glycine will decay toward zero during a sustained period of elevated glycine concentration. This property of GLYT1b may permit spillover from glycinergic terminals to nearby excitatory terminals during a prolonged burst of inhibitory activity, and reverse transport may extend the period of elevated glycine concentration beyond the end of the inhibitory burst.  相似文献   

5.
Na+ and Cl(-)-coupled glycine transporters control the availability of glycine neurotransmitter in the synaptic cleft of inhibitory glycinergic pathways. In this report, we have investigated the involvement of the second intracellular loop of the neuronal glycine transporter 2 (GLYT2) on the protein conformational equilibrium and the regulation by 4alpha-phorbol 12 myristate 13-acetate (PMA). By substituting several charged (Lys-415, Lys-418, and Lys-422) and polar (Thr-419 and Ser-420) residues for different amino acids and monitoring plasma membrane expression and kinetic behavior, we found that residue Lys-422 is crucial for glycine transport. The introduction of a negative charge in 422, and to a lower extent in neighboring N-terminal residues, dramatically increases transporter voltage dependence as assessed by response to high potassium depolarizing conditions. In addition, [2-(trimethylammonium)ethyl] methanethiosulfonate accessibility revealed a conformational connection between Lys-422 and the glycine binding/permeation site. Finally, we show that the mutation of positions Thr-419, Ser-420, and mainly Lys-422 to acidic residues abolishes the PMA-induced inhibition of transport activity and the plasma membrane transporter internalization. Our results establish a new structural basis for the action of PMA on GLYT2 and suggest a complex nature of the PMA action on this glycine transporter.  相似文献   

6.
The neurotransmitter glycine is removed from the synaptic cleft by two Na(+)-and Cl(-)-dependent transporters, the glial (GLYT1) and neuronal (GLYT2) glycine transporters. GLYT2 lacks a conserved cysteine in the first hydrophilic loop (EL1) that is reactive to [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET) in related transporters. A chimeric GLYT2 (GLYT2a-EL1) that contains GLYT1 sequences in this region, including the relevant cysteine, was sensitive to the reagent, and its sensitivity was decreased by co-substrates. We combined cysteine-specific biotinylation to detect transporter-reagent interactions with MTSET inactivation assays and temperature dependence analysis to study the mechanism by which Cl(-), Na(+), and glycine reduce methanethiosulfonate reagent inhibition. We demonstrate a Na(+) protective effect rather than an increased susceptibility to the reagent exerted by Li(+), as reported for the serotonin transporter. The different inhibition, protection, and reactivation properties between GLYT2a-EL1 and serotonin transporter suggest that EL1 is a source of structural heterogeneity involved in the specific effect of lithium on serotonin transport. The protection by Na(+) or Cl(-) on GLYT2a-EL1 was clearly dependent on temperature, suggesting that EL1 is not involved in ion binding but is subjected to ion-induced conformational changes. Na(+) and Cl(-) were required for glycine protection, indicating the necessity of prior ion interaction with the transporter for the binding of glycine. We conclude that EL1 acts as a fluctuating hinge undergoing sequential conformational changes during the transport cycle.  相似文献   

7.
Synaptic glycine levels are controlled by GLYTs (glycine transporters). GLYT1 is the main regulator of synaptic glycine concentrations and catalyses Na+-Cl--glycine co-transport with a 2:1:1 stoichiometry. In contrast, neuronal GLYT2 supplies glycine to the presynaptic terminal with a 3:1:1 stoichiometry. We subjected homology models of GLYT1 and GLYT2 to molecular dynamics simulations in the presence of Na+. Using molecular interaction potential maps and in silico mutagenesis, we identified a conserved region in the GLYT2 external vestibule likely to be involved in Na+ interactions. Replacement of Asp471 in this region reduced Na+ affinity and Na+ co-operativity of transport, an effect not produced in the homologous position (Asp295) in GLYT1. Unlike the GLYT1-Asp295 mutation, this Asp471 mutant increased sodium leakage and non-stoichiometric uncoupled ion movements through GLYT2, as determined by simultaneously measuring current and [3H]glycine accumulation. The homologous Asp471 and Asp295 positions exhibited distinct cation-sensitive external accessibility, and they were involved in Na+ and Li+-induced conformational changes. Although these two cations had opposite effects on GLYT1, they had comparable effects on accessibility in GLYT2, explaining the inhibitory and stimulatory responses to lithium exhibited by the two transporters. On the basis of these findings, we propose a role for Asp471 in controlling cation access to GLYT2 Na+ sites, ion coupling during transport and the subsequent conformational changes.  相似文献   

8.
Zafra F  Giménez C 《IUBMB life》2008,60(12):810-817
Glycine is an inhibitory neurotransmitter that is mainly active in the caudal areas of the CNS. However, glycine also participates in excitatory neurotransmission since it is a co-agonist of the NMDA subtype of glutamate receptors. The concentration of glycine at synapses is mainly controlled by two sodium and chloride dependent transporters, GLYT1 and GLYT2, proteins that display a complementary distribution and activity in the nervous system. Our understanding of the physiological role of these transporters has advanced recently, thanks to the development of specific inhibitors and the generation of mice defective in the corresponding genes. In addition, the three-dimensional resolution of the structure of a bacterial homologue has shed light on the mechanisms of glycine transport. It is likely that this knowledge will prove to be useful for the development of drugs with antipsychotic, procognitive or analgesic properties.  相似文献   

9.
Abstract: Clonal cell lines stably expressing the glial glycine transporter 1b (GLYT1b) and the neuronal glycine transporter 2 (GLYT2) from rat brain have been generated and used comparatively to examine their kinetics, ion dependence, and electrical properties. Differential sensitivity of the transporters to sarcosine is clearly exhibited by the clonal cell lines. GLYT2 transports glycine with higher apparent affinity than GLYT1b and is not inhibited by any assayed compound, as deduced by glycine transport assays and electrophysiological recordings. A sigmoidal Na+ dependence of the glycine uptake by the stable cell lines is observed, indicating the involvement of more than one Na+ in the transport process. A more cooperative behavior for Na+ of GLYT2 than GLYT1b is suggested. One Cl is required for GLYT1b and GLYT2 transport cycles, although GLYT1b shows three times higher affinity for this ion than GLYT2. The number of expressed transporters was sufficient to allow electrophysiological recordings of the uptake current in the two stable cell lines. GLYT2 exhibits more voltage dependence in both its glycine-evoked current and its capacitive currents recorded in the absence of substrate.  相似文献   

10.
In the vertebrate CNS, glycine acts as an inhibitory neurotransmitter and as the obligatory coagonist of glutamate at N-methyl-d-aspartate receptors. These roles depend on extracellular glycine levels, regulated by Na+/Cl-dependent transporters GLYT1, present mainly in glial cells, and GLYT2, predominantly neuronal. In Bergmann glia, GLYT1 mediates both, glycine uptake and efflux, which, in turn, influences excitatory neurotransmission at Purkinje cell synapses. The biochemical properties of GLYTs and their regulation by signaling pathways in these cells are largely unknown. We characterized Gly uptake in confluent primary cultures of Bergmann glia from chick cerebellum. Transport was found to be energy- and Na+-dependent, and was resolved into a high (Km=25 μM) and a low affinity (Km=1.1 mM) components identified as GLYT1 and transport System A, respectively. Results show that high affinity transport by GLYT1 is regulated by calcium from intracellular stores, calmodulin, and myosin light chain kinase through an actin cytoskeleton-mediated action. Special issue dedicated to Dr. Simo S. Oja  相似文献   

11.
It is widely accepted that glycine transporters of the GLYT1 type are situated on astrocytes whereas GLYT2 are present on glycinergic neuronal terminals where they mediate glycine uptake. We here used purified preparations of mouse spinal cord nerve terminals (synaptosomes) and of astrocyte-derived subcellular particles (gliosomes) to characterize functionally and morphologically the glial versus neuronal distribution of GLYT1 and GLYT2. Both gliosomes and synaptosomes accumulated [3H]GABA through GAT1 transporters and, when exposed to glycine in superfusion conditions, they released the radioactive amino acid not in a receptor-dependent manner, but as a consequence of glycine penetration through selective transporters. The glycine-evoked release of [3H]GABA was exocytotic from synaptosomes but GAT1 carrier-mediated from gliosomes. Based on the sensitivity of the glycine effects to selective GLYT1 and GLYT2 blockers, the two transporters contributed equally to evoke [3H]GABA release from GABAergic synaptosomes; even more surprising, the 'neuronal' GLYT2 contributed more efficiently than the 'glial' GLYT1 to mediate the glycine effect in [3H]GABA releasing gliosomes. These functional results were largely confirmed by confocal microscopy analysis showing co-expression of GAT1 and GLYT2 in GFAP-positive gliosomes and of GAT1 and GLYT1 in MAP2-positive synaptosomes. To conclude, functional GLYT1 are present on neuronal axon terminals and functional GLYT2 are expressed on astrocytes, indicating not complete selectivity of glycine transporters in their glial versus neuronal localization in the spinal cord.  相似文献   

12.
In this study we have examined the effect of the SNARE protein syntaxin 1A on the glycine transporters GLYT1 and GLYT2. Our results demonstrate a functional and physical interaction between both glycine transporters and syntaxin 1A. Co-transfection of syntaxin 1A with GLYT1 or GLYT2 in COS cells resulted in approximately 40% inhibition in glycine transport. This inhibition was reversed by the syntaxin 1A-binding protein, Munc18. Furthermore, immunoprecipitation studies showed a physical interaction between syntaxin 1A and both transporters in COS cells and in rat brain tissue. Finally, we conclude that this physical interaction resulted in a partial removal of the glycine transporters from the plasma membrane as demonstrated by biotinylation studies.  相似文献   

13.
Glutamate transport by the excitatory amino acid transporters (EAATs) is coupled to the co-transport of 3 Na(+) ions and 1 H(+) and the counter-transport of 1 K(+) ion, which ensures that extracellular glutamate concentrations are maintained in the submicromolar range. In addition to the coupled ion fluxes, glutamate transport activates an uncoupled anion conductance that does not influence the rate or direction of transport but may have the capacity to influence the excitability of the cell. Free Zn(2+) ions are often co-localized with glutamate in the central nervous system and have the capacity to modulate the dynamics of excitatory neurotransmission. In this study we demonstrate that Zn(2+) ions inhibit the uncoupled anion conductance and also reduce the affinity of L-aspartate for EAAT4. The molecular basis for this effect was investigated using site-directed mutagenesis. Two histidine residues in the extracellular loop between transmembrane domains three and four of EAAT4 appear to confer Zn(2+) inhibition of the anion conductance.  相似文献   

14.
Concentrations of extracellular glycine in the central nervous system are regulated by Na+/Cl-dependent glycine transporters, GLYT1 and GLYT2. N-Arachidonylglycine (NAGly) is an endogenous inhibitor of GLYT2 with little or no effect on GLYT1 and is analgesic in rat models of neuropathic and inflammatory pain. Understanding the molecular basis of NAGly interactions with GLYT2 may allow for the development of novel therapeutics. In this study, chimeric transporters were used to determine the structural basis for differences in NAGly sensitivity between GLYT1 and GLYT2 and also the actions of a series of related N-arachidonyl amino acids. Extracellular loops 2 and 4 of GLYT2 are important in the selective inhibition of GLYT2 by NAGly and by the related compounds N-arachidonyl-γ-aminobutyric acid and N-arachidonyl-d-alanine, whereas only the extracellular loop 4 of GLYT2 is required for N-arachidonyl-l-alanine inhibition of transport. These observations suggest that the structure of the head group of these compounds is important in determining how they interact with extracellular loops 2 and 4 of GLYT2. Site-directed mutagenesis of GLYT2 EL4 residues was used to identify the key residues Arg531, Lys532, and Ile545 that contribute to the differences in NAGly sensitivity.  相似文献   

15.
The GLYT1 (glycine transporter-1) regulates both glycinergic and glutamatergic neurotransmission by controlling the reuptake of glycine at synapses. Trafficking to the cell surface of GLYT1 is critical for its function. In the present paper, by using mutational analysis of the GLYT1 C-terminal domain, we identified the evolutionarily conserved motif R(575)L(576)(X(8))D(585) as being necessary for ER (endoplasmic reticulum) export. This is probably due to its capacity to bind Sec24D, a component of the COPII (coatomer coat protein II) complex. This ER export motif was active when introduced into the related GLYT2 transporter but not in the unrelated VSVG (vesicular-stomatitis virus glycoprotein)-GLYT1 protein in which this motif was mutated but was not transported to the plasma membrane, although this effect was rescued by co-expressing these mutants with wild-type GLYT1. This behaviour suggests that GLYT1 might form oligomers along the trafficking pathway. Cross-linking assays performed in rat brain synaptosomes and FRET (fluorescence resonance energy transfer) microscopy in living cells confirmed the existence of GLYT1 oligomers. In summary, we have identified a motif involved in the ER exit of GLYT1 and, in analysing the influence of this motif, we have found evidence that oligomerization is important for the trafficking of GLYT1 to the cell surface. Because this motif is conserved in the NSS (sodium- and chloride-dependent neurotransmitter transporter) family, it is possible that this finding could be extrapolated to other related transporters.  相似文献   

16.
Glycine neurotransmitter transporters: an update   总被引:6,自引:0,他引:6  
Glycine accomplishes several functions as a transmitter in the central nervous system (CNS). As an inhibitory neurotransmitter, it participates in the processing of motor and sensory information that permits movement, vision, and audition. This action of glycine is mediated by the strychnine-sensitive glycine receptor, whose activation produces inhibitory post-synaptic potentials. In some areas of the CNS, glycine seems to be co-released with GABA, the main inhibitory amino acid neurotransmitter. In addition, glycine modulates excitatory neurotransmission by potentiating the action of glutamate at N-methyl-D-aspartate (NMDA) receptors. It is believed that the termination of the different synaptic actions of glycine is produced by rapid re-uptake through two sodium-and-chloride-coupled transporters, GLYT1 and GLYT2, located in the plasma membrane of glial cells or pre-synaptic terminals, respectively. Glycine transporters may become major targets for therapeutic of pathological alterations in synaptic function. This article reviews recent progress on the study of the molecular heterogeneity, localization, function, structure, regulation and pharmacology of the glycine transporter proteins.  相似文献   

17.
Glycine accomplishes several functions as a transmitter in the central nervous system(CNS). As an inhibitory neurotransmitter, it participates in the processing of motor and sensory information that permits movement, vision, and audition. This action of glycine is mediated by the strychnine-sensitive glycine receptor, whose activation produces inhibitory post-synaptic potentials. In some areas of the CNS, glycine seems to be co-released with GABA, the main inhibitory amino acid neurotransmitter. In addition, glycine modulates excitatory neurotransmission by potentiating the action of glutamate at N-methyl-D-aspartate (NMDA) receptors. It is believed that the termination of the different synaptic actions of glycine is produced by rapid reuptake through two sodium-and-chloride-coupled transporters, GLYT1 and GLYT2, located in the plasma membrane of glial cells or pre-synaptic terminals, respectively. Glycine transporters may become major targets for therapeutic of pathological alterations in synaptic function. This article reviews recent progress on the study of the molecular heterogeneity, localization, function, structure, regulation and pharmacology of the glycine transporter  相似文献   

18.
Studies on hippocampal glycine release are extremely rare. We here investigated release from mouse hippocampus glycinergic terminals selectively pre-labelled with [3H]glycine through transporters of the GLYT2 type. Purified synaptosomes were incubated with [3H]glycine in the presence of the GLYT1 blocker NFPS to abolish uptake (∼ 30%) through GLYT1. The non-GLYT1-mediated uptake was entirely sensitive to the GLYT2 blocker Org25543. Depolarization during superfusion with high-K+ (15–50 mmol/L) provoked overflows totally dependent on external Ca2+, whereas in the spinal cord the 35 or 50 mmol/L KCl-evoked overflow (higher than that in hippocampus) was only partly dependent on extraterminal Ca2+. In the hippocampus, the Ca2+-dependent 4-aminopyridine (1 mmol/L)-evoked overflow was five-fold lower than that in spinal cord. The component of the 10 μmol/L veratridine-induced overflow dependent on external Ca2+ was higher in the hippocampus than that in spinal cord, although the total overflow in the hippocampus was only half of that in the spinal cord. Part of the veratridine-evoked hippocampal overflow occurred by GLYT2 reversal and part by bafilomycin A1-sensitive exocytosis dependent on cytosolic Ca2+ generated through the mitochondrial Na+/Ca2+ exchanger. As glycine sites on NMDA receptors are normally not saturated, understanding mechanisms of glycine release should facilitate pharmacological modulation of NMDA receptor function.  相似文献   

19.
The subcellular localization of glycine transporters one (GLYT1) and two (GLYT2) stably expressed in PC12 cells has been studied. To facilitate visualization, enhanced green fluorescent protein (GFP) was fused to the amino terminus of both glycine transporters. Functional analysis of the GFP-GLYT1 and GFP-GLYT2 stable cell lines demonstrated that they exhibited high affinity for glycine and the characteristic properties of both glycine transporter subtypes. The GFP-coupled transporters were differently distributed throughout the cell. GFP-GLYT1 was mainly localized on the plasma membrane, whereas most of GFP-GLYT2 was present on large dense-core vesicles and endosomes. Both transporters were absent from the synaptic vesicle population in PC12 cells.  相似文献   

20.
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem of vertebrates. Glycine is accumulated into synaptic vesicles by a proton-coupled transport system and released to the synaptic cleft after depolarization of the presynaptic terminal. The inhibitory action of glycine is mediated by pentameric glycine receptors (GlyR) that belong to the ligand-gated ion channel superfamily. The synaptic action of glycine is terminated by two sodium- and chloride-coupled transporters, GLYT1 and GLYT2, located in the glial plasma membrane and in the presynaptic terminals, respectively. Dysfunction of inhibitory glycinergic neurotransmission is associated with several forms of inherited mammalian myoclonus. In addition, glycine could participate in excitatory neurotransmission by modulating the activity of the NMDA subtype of glutamate receptor. In this article, we discuss recent progress in our understanding of the molecular mechanisms that underlie the physiology and pathology of glycinergic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号