首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the structures of two complexes of 5 S rRNA with homologous ribosomal proteins, Escherichia coli L25 and Thermus thermophilus TL5, revealed that amino acid residues interacting with RNA can be divided into two different groups. The first group consists of non-conserved residues, which form intermolecular hydrogen bonds accessible to solvent. The second group, comprised of strongly conserved residues, form intermolecular hydrogen bonds that are shielded from solvent. Site-directed mutagenesis was used to introduce mutations into the RNA-binding site of protein TL5. We found that replacement of residues of the first group does not influence the stability of the TL5.5 S rRNA complex, whereas replacement of residues of the second group leads to destabilization or disruption of the complex. Stereochemical analysis shows that the replacements of residues of the second group always create complexes with uncompensated losses of intermolecular hydrogen bonds. We suggest that these shielded intermolecular hydrogen bonds are responsible for the recognition between the protein and RNA.  相似文献   

2.
Two recombinant proteins of the CTC family were prepared: the general stress protein CTC from Bacillus subtilis and its homolog from Aquifex aeolicus. The general stress protein CTC from B. subtilis forms a specific complex with 5S rRNA and its stable fragment of 60 nucleotides, which contains internal loop E. The ribosomal protein TL5 from Thermus thermophilus, which binds with high affinity to 5S rRNA in the loop E region, was also shown to replace the CTC protein from B. subtilis in its complexes with 5S rRNA and its fragment. The findings suggest that the protein CTC from B. subtilis binds to the same site on 5S rRNA as the protein TL5. The protein CTC from A. aeolicus, which is 50 amino acid residues shorter from the N-terminus than the proteins TL5 from T. thermophilus and CTC from B. subtilis, does not interact with 5S rRNA.  相似文献   

3.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

4.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

5.
M Stoldt  J W?hnert  M G?rlach    L R Brown 《The EMBO journal》1998,17(21):6377-6384
The structure of the Escherichia coli ribosomal protein L25 has been determined to an r.m.s. displacement of backbone heavy atoms of 0.62 +/- 0.14 A by multi-dimensional heteronuclear NMR spectroscopy on protein samples uniformly labeled with 15N or 15N/13C. L25 shows a new topology for RNA-binding proteins consisting of a six-stranded beta-barrel and two alpha-helices. A putative RNA-binding surface for L25 has been obtained by comparison of backbone 15N chemical shifts for L25 with and without a bound cognate RNA containing the eubacterial E-loop that is the site for binding of L25 to 5S ribosomal RNA. Sequence comparisons with related proteins, including the general stress protein, CTC, show that the residues involved in RNA binding are highly conserved, thereby providing further confirmation of the binding surface. Tertiary structure comparisons indicate that the six-stranded beta-barrels of L25 and of the tRNA anticodon-binding domain of glutaminyl-tRNA synthetase are similar.  相似文献   

6.
The binding site of the yeast 60S ribosomal subunit protein L25 on 26S rRNA was determined by RNase protection experiments. The fragments protected by L25 originate from a distinct substructure within domain IV of the rRNA, encompassing nucleotides 1465-1632 and 1811-1861. The protected fragments are able to rebind to L25 showing that they constitute the complete protein binding site. This binding site is remarkably conserved in all 23/26/28S rRNAs sequenced to date including Escherichia coli 23S rRNA. In fact heterologous complexes between L25 and E. coli 23S rRNA could be formed and RNase protection studies on these complexes demonstrated that L25 indeed recognizes the conserved structure. Strikingly the L25 binding site on 23S rRNA is virtually identical to the previously identified binding site of E. coli ribosomal protein EL23. Therefore EL23 is likely to be the prokaryotic counterpart of L25 in spite of the limited homology displayed by the amino acid sequences of the two proteins.  相似文献   

7.
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilushave earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5–RNA complex crystallized, and its structure determined to 2.3 Å. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment–L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis.  相似文献   

8.
The presence of CTC family proteins is a unique feature of bacterial cells. In the CTC family, there are true ribosomal proteins (found in ribosomes of exponentially growing cells), and at the same time there are also proteins temporarily associated with the ribosome (they are produced by the cells under stress only and incorporate into the ribosome). One feature is common for these proteins — they specifically bind to 5S rRNA. In this review, the history of investigations of the best known representatives of this family is described briefly. Structural organization of the CTC family proteins and their occurrence among known taxonomic bacterial groups are discussed. Structural features of 5S rRNA and CTC protein are described that predetermine their specific interaction. Taking into account the position of a CTC protein and its intermolecular contacts in the ribosome, a possible role of its complex with 5S rRNA in ribosome functioning is discussed.  相似文献   

9.
In this work we show for the first time that the overproduced N-terminal fragment (residues 1-91) of ribosomal protein TL5 binds specifically to 5S rRNA and that the region of this fragment containing residues 80-91 is a necessity for its RNA-binding activity. The fragment of Escherichia coli 5S rRNA protected by TL5 against RNase A hydrolysis was isolated and sequenced. This 39 nucleotides fragment contains loop E and helices IV and V of 5S rRNA. The isolated RNA fragment forms stable complexes with TL5 and its N-terminal domain. Crystals of TL5 in complex with the RNA fragment diffracting to 2.75 A resolution were obtained.  相似文献   

10.
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilus have earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5-RNA complex crystallized, and its structure determined to 2.3 A. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment-L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis.  相似文献   

11.
We have investigated protein-rRNA cross-links formed in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus at the molecular level using UV and 2-iminothiolane as cross-linking agents. We identified amino acids cross-linked to rRNA for 13 ribosomal proteins from these organisms, namely derived from S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29 and L36. Several other peptide stretches cross-linked to rRNA have been sequenced in which no direct cross-linked amino acid could be detected. The cross-linked amino acids are positioned within loop domains carrying RNA binding features such as conserved basic and aromatic residues. One of the cross-linked peptides in ribosomal protein S3 shows a common primary sequence motif--the KH motif--directly involved in interaction with rRNA, and the cross-linked amino acid in ribosomal protein L36 lies within the zinc finger-like motif of this protein. The cross-linked amino acids in ribosomal proteins S17 and L6 prove the proposed RNA interacting site derived from three-dimensional models. A comparison of our structural data with mutations in ribosomal proteins that lead to antibiotic resistance, and with those from protein-antibiotic cross-linking experiments, reveals functional implications for ribosomal proteins that interact with rRNA.  相似文献   

12.
The majority of constitutive proteins in the bacterial 30S ribosomal subunit have orthologues in Eukarya and Archaea. The eukaryotic counterparts for the remainder (S6, S16, S18 and S20) have not been identified. We assumed that amino acid residues in the ribosomal proteins that contact rRNA are to be constrained in evolution and that the most highly conserved of them are those residues that are involved in forming the secondary protein structure. We aligned the sequences of the bacterial ribosomal proteins from the S20p, S18p and S16p families, which make multiple contacts with rRNA in the Thermus thermophilus 30S ribosomal subunit (in contrast to the S6p family), with the sequences of the unassigned eukaryotic small ribosomal subunit protein families. This made it possible to reveal that the conserved structural motifs of S20p, S18p and S16p that contact rRNA in the bacterial ribosome are present in the ribosomal proteins S25e, S26e and S27Ae, respectively. We suggest that ribosomal protein families S20p, S18p and S16p are homologous to the families S25e, S26e and S27Ae, respectively.  相似文献   

13.
A specific complex of 5 S rRNA and several ribosomal proteins is an integral part of ribosomes in all living organisms. Here we studied the importance of Escherichia coli genes rplE, rplR and rplY, encoding 5 S rRNA-binding ribosomal proteins L5, L18 and L25, respectively, for cell growth, viability and translation. Using recombineering to create gene replacements in the E. coli chromosome, it was shown that rplE and rplR are essential for cell viability, whereas cells deleted for rplY are viable, but grow noticeably slower than the parental strain. The slow growth of these L25-defective cells can be stimulated by a plasmid expressing the rplY gene and also by a plasmid bearing the gene for homologous to L25 general stress protein CTC from Bacillus subtilis. The rplY mutant ribosomes are physically normal and contain all ribosomal proteins except L25. The ribosomes from L25-defective and parental cells translate in vitro at the same rate either poly(U) or natural mRNA. The difference observed was that the mutant ribosomes synthesized less natural polypeptide, compared to wild-type ribosomes both in vivo and in vitro. We speculate that the defect is at the ribosome recycling step.  相似文献   

14.
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.  相似文献   

15.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

16.
We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.  相似文献   

17.
Nevskaya  N. A.  Nikonov  O. S.  Revtovich  S. V.  Garber  M. B.  Nikonov  S. V. 《Molecular Biology》2004,38(5):789-798
Specific binding of ribosomal proteins to rRNA has been analyzed, and the method for determining the recognizing modules on the protein surface has been proposed. This method is based on the search for the atoms on the protein molecule that are involved in the conserved hydrogen bonds with rRNA and form invariant spatial structure in both free and RNA-bound ribosomal proteins. The potential of this method is illustrated by determining the rRNA-recognizing modules on the surface of ribosomal proteins S8, S15, and L5.  相似文献   

18.
Contributions of basic residues to ribosomal protein L11 recognition of RNA   总被引:3,自引:0,他引:3  
The C-terminal domain of ribosomal protein L11, L11-C76, binds in the distorted minor groove of a helix within a 58 nucleotide domain of 23 S rRNA. To study the electrostatic component of RNA recognition in this protein, arginine and lysine residues have been individually mutated to alanine or methionine residues at the nine sequence positions that are conserved as basic residues among bacterial L11 homologs. In measurements of the salt dependence of RNA-binding, five of these mutants have a reduced value of - partial differentiallog(K(obs))/ partial differentiallog[KCl] as compared to the parent L11-C76 sequence, indicating that these residues interact with the RNA electrostatic field. These five residues are located at the perimeter of the RNA-binding surface of the protein; all five of them form salt bridges with phosphates in the crystal structure of the complex. A sixth residue, Lys47, was found to make an electrostatic contribution to binding when measurements were made at pH 6.0, but not at pH 7.0; its pK in the free protein must be <6.5. The unusual behavior of Lys47 is explained by its burial in the hydrophobic core of the free protein, and unburial in the RNA-bound protein, where it forms a salt bridge with a phosphate. The contributions of these six residues to the electrostatic component of binding are not additive; thus the magnitude of the salt dependence cannot be used to count the number of ionic interactions in this complex. By interacting with irregular features of the RNA backbone, including an S-turn, these basic residues contribute to the specificity of L11 for its target site.  相似文献   

19.
A 5S-rRNA-containing ribonucleoprotein was purified to homogeneity from a rabbit muscle extract through its affinity to phosphofructokinase-1 and then structurally characterized. This RNP was compared to the 5S-rRNA-containing ribonucleoprotein extracted from rabbit liver ribosomal 60S subunits with EDTA. Analytical gel filtration revealed a molecular mass of 70-80 kDa for both complexes. Gel electrophoresis of the ribosomal complex revealed three protein components, one migrating as a band of 35 kDa and two other small polypeptides of apparently 16.5 kDa and 17.5 kDa. In the sarcoplasmic RNP these small polypeptides were absent. However, besides a major component of 35 kDa, up to five slightly larger and smaller species of 31.5-36.5 kDa were detected. Despite this heterogeneity, only one N-terminal amino acid sequence was obtained for the isolated sarcoplasmic protein, suggesting a C-terminal heterogeneity of one single polypeptide. Within the first 46 amino acid residues no difference between the sequences of the isolated 35-kDa components of sarcoplasmic and ribosomal complexes was found. Homology criteria indicated that this component belongs to the ribosomal protein L5 family. The RNA was identified by complete enzymatic sequencing as 5S rRNA; it was also identical in both complexes and is strongly homologous to 5S rRNA of man. Both L5-5S-RNA complexes could be resolved by hydroxyapatite chromatography into three species still consisting of both protein and RNA. 5'-Terminal dephosphorylation experiments showed that this heterogeneity is exclusively due to the differing number (1-3) of 5'-terminal phosphates. The two additional low-molecular-mass proteins were stably associated to the ribosomal RNP at high salt concentrations in a stoichiometry of about 2:1. They were identified as the acidic phosphoproteins P2/P3 by N-terminal sequencing. High phosphate concentrations facilitated their dissociation from the L5-5S-RNA complex. For the sarcoplasmic L5-5S-RNA complex a hitherto unknown interaction with phosphofructokinase-1, affecting the enzymatic properties, was demonstrated.  相似文献   

20.
The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA–protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA–protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号