首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bitter taste receptors (T2Rs) belong to the super family of G protein-coupled receptors (GPCRs). There are 25 T2Rs expressed in humans, and these interact with a large and diverse group of bitter ligands. T2Rs are expressed in many extra-oral tissues and can perform diverse physiological roles. Structure-function studies led to the identification of similarities and dissimilarities between T2Rs and Class A GPCRs including amino acid conservation and novel motifs. However, the efficacy of most of the T2R ligands is not yet elucidated and the biochemical pharmacology of T2Rs is poorly understood. Recent studies on T2Rs characterized novel ligands including blockers for these receptors that include inverse agonist and antagonists. In this review we discuss the techniques used for elucidating bitter blockers, concept of ligand bias, generic amino acid numbering, the role of cholesterol, and conserved water molecules in the biochemistry and pharmacology of T2Rs.  相似文献   

3.
This report, based on the past experience of European centres, offers practical guidance on the chemistry and biochemistry of PET radioligands used for the in vivo imaging of dopamine receptors and re-uptake sites. It mainly summarizes methods for the preparation of D1 and D2 receptor ligands labelled with positron-emitting radioisotopes. Some of these ligands (11C-labelled SCH23390, raclopride and nomifensine, 18F-labelled butyrophenones, [76Br]bromolisuride), which have been found useful in PET clinical investigations, have been emphasized. This report is intended as an introduction and guideline for new PET-groups who want to start research in the dopaminergic neurotransmission imaging field.  相似文献   

4.
Plasminogen activation: biochemistry, physiology, and therapeutics   总被引:4,自引:0,他引:4  
The mammalian serine protease zymogen, plasminogen, can be converted into the active enzyme plasmin by vertebrate plasminogen activators urokinase (uPA), tissue plasminogen activator (tPA), factor XII-dependent components, or by bacterial streptokinase. The biochemical properties of the major components of the system, plasminogen/plasmin, plasminogen activators, and inhibitors of the plasminogen activators, are reviewed. The plasmin system has been implicated in a variety of physiological and pathological processes such as fibrinolysis, tissue remodeling, cell migration, inflammation, and tumor invasion and metastasis. A defective plasminogen activator/inhibitor system also has been linked to some thromboembolic complications. Recent studies of the mechanism of fibrinolysis in human plasma suggest that tPA may be the primary initiator and that overall fibrinolytic activity is strongly regulated at the tPA level. A simple model for the initiation and regulation of plasma fibrinolysis based on these studies has been formulated. The plasminogen activators have been used for thrombolytic therapy. Three new thrombolytic agents--tPA, pro-uPA, and acylated streptokinase-plasminogen complex--have been found to possess better properties over their predecessors, urokinase and streptokinase. Further improvements of these molecules using genetic and protein engineering tactics are being pursued.  相似文献   

5.
Essential fatty acids: biochemistry, physiology and pathology   总被引:2,自引:0,他引:2  
Essential fatty acids (EFAs), linoleic acid (LA), and alpha-linolenic acid (ALA) are essential for humans, and are freely available in the diet. Hence, EFA deficiency is extremely rare in humans. To derive the full benefits of EFAs, they need to be metabolized to their respective long-chain metabolites, i.e., dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from ALA. Some of these long-chain metabolites not only form precursors to respective prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), but also give rise to lipoxins (LXs) and resolvins that have potent anti-inflammatory actions. Furthermore, EFAs and their metabolites may function as endogenous angiotensin-converting enzyme and 3-hdroxy-3-methylglutaryl coenzyme A reductase inhibitors, nitric oxide (NO) enhancers, anti-hypertensives, and anti-atherosclerotic molecules. Recent studies revealed that EFAs react with NO to yield respective nitroalkene derivatives that exert cell-signaling actions via ligation and activation of peroxisome proliferator-activated receptors. The metabolism of EFAs is altered in several diseases such as obesity, hypertension, diabetes mellitus, coronary heart disease, schizophrenia, Alzheimer's disease, atherosclerosis, and cancer. Thus, EFAs and their derivatives have varied biological actions and seem to be involved in several physiological and pathological processes.  相似文献   

6.
7.
This review describes and compares the properties of seven individual kallikreins present in the prostate of four mammalian species. The first kallikrein discovered in prostate was the one of guinea-pig. That protein has kininogenase activity like classical kallikreins. The rat prostate expresses two different kallikreins, S3 and P1, whose physiological functions remain to be determined precisely. In man, prostate-specific antigen (PSA) is an abundant secretory protein. It is currently used as a prostate cancer marker. The human prostate may also contain renal/pancreatic kallikrein and human glandular kallikrein-1 (hGK-1). Arginine esterase secreted by dog prostate is probably the most abundant kallikrein. It has no known physiological substrate.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
红细胞C3b受体的免疫生理与生化研究   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号