首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li S  Quarto N  Longaker MT 《PloS one》2010,5(11):e14033

Background

As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone.

Methods

BrdU incorporation, immunoblotting and osteogenic differentiation assays were performed to investigate the proliferative rate and osteogenic potential of embryonic and postnatal osteoblasts derived from mouse frontal and parietal bones. Co-culture experiments and treatment with conditioned medium harvested from both types of osteoblasts were performed to investigate potential interactions between the two different tissue origin osteoblasts. Immunoblotting techniques were used to investigate the endogenous level of FGF-2 and the activation of three major FGF signaling pathways. Knockdown of FGF Receptor 1 (FgfR1) was employed to inactivate the FGF signaling.

Results

Our results demonstrated that striking differences in cell proliferation and osteogenic differentiation between the frontal and parietal bone can be detected already at embryonic stages. The greater proliferation rate, as well as osteogenic capacity of frontal bone derived osteoblasts, were paralleled by an elevated level of FGF-2 protein synthesis. Moreover, an enhanced activation of FGF-signaling pathways was observed in frontal bone derived osteoblasts. Finally, the greater osteogenic potential of frontal derived osteoblasts was dramatically impaired by knocking down FgfR1.

Conclusions

Osteoblasts from mouse neural crest derived frontal bone displayed a greater proliferative and osteogenic potential and endogenous enhanced activation of FGF signaling compared to osteoblasts from mesoderm derived parietal bone. FGF signaling plays a key role in determining biological differences between the two types of osteoblasts.  相似文献   

2.
Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.  相似文献   

3.
4.
Fibroblast growth factor-1 (FGF1) and FGF2 play a critical role in angiogenesis, a formation of new blood vessels from existing blood vessels. Integrins are critically involved in FGF signaling through crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and induces FGF receptor-1 (FGFR1)-FGF1-integrin αvβ3 ternary complex. We previously generated an integrin binding defective FGF1 mutant (Arg-50 to Glu, R50E). R50E is defective in inducing ternary complex formation, cell proliferation, and cell migration, and suppresses FGF signaling induced by WT FGF1 (a dominant-negative effect) in vitro. These findings suggest that FGFR and αvβ3 crosstalk through direct integrin binding to FGF, and that R50E acts as an antagonist to FGFR. We studied if R50E suppresses tumorigenesis and angiogenesis. Here we describe that R50E suppressed tumor growth in vivo while WT FGF1 enhanced it using cancer cells that stably express WT FGF1 or R50E. Since R50E did not affect proliferation of cancer cells in vitro, we hypothesized that R50E suppressed tumorigenesis indirectly through suppressing angiogenesis. We thus studied the effect of R50E on angiogenesis in several angiogenesis models. We found that excess R50E suppressed FGF1-induced migration and tube formation of endothelial cells, FGF1-induced angiogenesis in matrigel plug assays, and the outgrowth of cells in aorta ring assays. Excess R50E suppressed FGF1-induced angiogenesis in chick embryo chorioallantoic membrane (CAM) assays. Interestingly, excess R50E suppressed FGF2-induced angiogenesis in CAM assays as well, suggesting that R50E may uniquely suppress signaling from other members of the FGF family. Taken together, our results suggest that R50E suppresses angiogenesis induced by FGF1 or FGF2, and thereby indirectly suppresses tumorigenesis, in addition to its possible direct effect on tumor cell proliferation in vivo. We propose that R50E has potential as an anti-cancer and anti-angiogenesis therapeutic agent (“FGF1 decoy”).  相似文献   

5.
Models of the oligomeric FGF signaling complex, including those derived from crystal structures, vary in stoichiometry and arrangement of the three subunits comprised of heparin/heparan sulfate chains, FGFR tyrosine kinase and activating FGF. Here, using covalent affinity crosslinking of radiolabeled FGF7 to binary complexes of FGFR2IIIb and heparin, we show that two molecules of FGF7 contact each FGFR2IIIb. This supports models that propose a dimeric complex of two units with stoichiometry 1 FGF:1 FGFR in which each FGF contacts both FGFR. The bivalent FGF7 contact was dependent on the full-length amino terminus of FGF7alpha and the intracellular domain of FGFR2IIIb extending through the juxtamembrane domain and the beta1 and beta2 strands of the kinase which is required for ATP binding. We propose that the differences in crosslinking report differences in relationships among subunits in the ectodomain of the complex that are affected by the amino terminus of FGF and the FGFR intracellular domain. From this, we suggest the corollary that conformational relationships among subunits in the ectodomain are transmitted to the intracellular and ATP binding domains during activation of the complex.  相似文献   

6.
The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex   总被引:5,自引:0,他引:5  
Fibroblast growth factor (FGF) signaling begins with the formation of a ternary complex of FGF, FGF receptor (FGFR), and heparan sulfate (HS). Multiple models have been proposed for the ternary complex. However, major discrepancies exist among those models, and none of these models have evaluated the functional importance of the interacting regions on the HS chains. To resolve the discrepancies, we measured the size and molar ratio of HS in the complex and showed that both FGF1 and FGFR1 simultaneously interact with HS; therefore, a model of 2:2:2 FGF1.HS.FGFR1 was shown to fit the data. Using genetic and biochemical methods, we generated HSs that were defective in FGF1 and/or FGFR1 binding but could form the signaling ternary complex. Both genetically and chemically modified HSs were subsequently assessed in a BaF3 cell mitogenic activity assay. The ability of HS to support the ternary complex formation was found to be required for FGF1-stimulated cell proliferation. Our data also proved that specific critical groups and sites on HS support complex formation. Furthermore, the molar ratio of HS, FGF1, and FGFR1 in the ternary complex was found to be independent of the size of HS, which indicates that the selected model can take place on the cell surface proteoglycans. Finally, a mechanism for the FGF.FGFR signaling complex formation on cell membrane was proposed, where FGF and FGFR have their own binding sites on HS and a distinct ternary complex formation site is directly responsible for mitogenic activity.  相似文献   

7.
8.
Heparin-like saccharides play an essential role in binding to both fibroblast growth factors (FGF) and their receptors at the cell surface. In this study we prepared a series of heparin oligosaccharides according to their size and sulfation level. We then investigated their affinity for FGF2 and their ability to support FGF2 mitogenesis of heparan sulfate-deficient cells expressing FGFR1c. Tetra- and hexasaccharides bound FGF2, but failed to dimerize the growth factor. Nevertheless, these saccharides promoted FGF2-mediated cell growth. Furthermore, whereas enzymatic removal of the non-reducing end 2-O-sulfate group had little effect on the 1:1 interaction with FGF2, it eliminated the mitogenic activity of these saccharides. This evidence supports the symmetric two-end model of ternary complex formation. In contrast, even at very low concentrations, octasaccharide and larger heparin fragments conferred a potent mitogenic activity that was independent of terminal 2-O-sulfation. This correlated with the ability to dimerize FGF2 in an apparently cooperative manner. This data suggests that potent mitogenic signaling results from heparin-mediated trans-dimerization of FGF2, consistent with the asymmetric model of ternary complex formation. We propose that, depending on saccharide structure, there are different architectures and modes of ternary complex assembly that differ in stability and/or efficiency of transmembrane signaling.  相似文献   

9.
Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary complex SOS binds to FGF and FGFR and thereby increases FGF-FGFR affinity. SOS also interacts with the adjoining FGFR and thereby promotes protein-protein interactions that stabilize dimerization. This structural finding is supported by the inability of selectively desulfated SOS molecules to promote receptor dimerization. Thus, we propose that SOS potentiates FGF signaling by imitating the dual role of heparin in increasing FGF-FGFR affinity and promoting receptor dimerization. Hence, the dimeric FGF-FGFR-SOS structure substantiates the recently proposed "two-end" model, by which heparin induces FGF-FGFR dimerization. Moreover, the FGF-FGFR-SOS structure provides an attractive template for the development of easily synthesized SOS-related heparin agonists and antagonists that may hold therapeutic potential.  相似文献   

10.

Background

Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin αvβ3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation.

Principal Findings

We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function.

Conclusions/Significance

Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.  相似文献   

11.
Fibroblast growth factor-2 (FGF2) is a potent angiogenic factor in gliomas. Heparan sulfate promotes ligand binding to receptor tyrosine kinase and regulates signaling. The goal of this study was to examine the contribution of heparan sulfate proteoglycans (HSPGs) to glioma angiogenesis. Here we show that all brain endothelial cell HSPGs carry heparan sulfate chains similarly capable of forming a ternary complex with FGF2 and fibroblast growth factor receptor-1c and of promoting a mitogenic signal. Immunohistochemical analysis revealed that glypican-1 was overexpressed in glioma vessel endothelial cells, whereas this cell-surface HSPG was consistently undetectable in normal brain vessels. To determine the effect of increased glypican-1 expression on FGF2 signaling, we transfected normal brain endothelial cells, which express low base-line levels of glypican-1, with this proteoglycan. Glypican-1 expression enhanced growth of brain endothelial cells and sensitized them to FGF2-induced mitogenesis despite the fact that glypican-1 remained a minor proteoglycan. In contrast, overexpression of syndecan-1 had no effect on growth or FGF2 sensitivity. We conclude that the glypican-1 core protein has a specific role in FGF2 signaling. Glypican-1 overexpression may contribute to angiogenesis and the radiation resistance characteristic of this malignancy.  相似文献   

12.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

13.
14.
15.
Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.  相似文献   

16.
Endocytosis is an important mechanism to regulate tumor necrosis factor (TNF) signaling. In contrast to TNF receptor 1 (TNFR1; CD120a), the relevance of receptor internalization for signaling as well as the fate and route of internalized TNF receptor 2 (TNFR2; CD120b) is poorly understood. To analyze the dynamics of TNFR2 signaling and turnover at the plasma membrane we established a human TNFR2 expressing mouse embryonic fibroblast cell line in a TNFR1−/−/TNFR2−/− background. TNF stimulation resulted in a decrease of constitutive TNFR2 ectodomain shedding. We hypothesized that reduced ectodomain release is a result of TNF/TNFR2 complex internalization. Indeed, we could demonstrate that TNFR2 was internalized together with its ligand and cytoplasmic binding partners. Upon endocytosis the TNFR2 signaling complex colocalized with late endosome/lysosome marker Rab7 and entered the lysosomal degradation pathway. Furthermore, we identified a di-leucin motif in the cytoplasmic part of TNFR2 suggesting clathrin-dependent internalization of TNFR2. Internalization defective TNFR2 mutants are capable to signal, i.e. activate NFκB, demonstrating that the di-leucin motif dependent internalization is dispensable for this response. We therefore propose that receptor internalization primarily serves as a negative feed-back to limit TNF responses via TNFR2.  相似文献   

17.
Receptor endocytosis is critical for cell signaling. IGF1R mediates an autocrine loop that is de-regulated in Ewing Sarcoma (ES) cells. Here we study the impact of IGF1R internalization, mediated by clathrin and caveolin-1 (CAV1), in ES signaling. We used clathrin and CAV1-siRNA to interfere in clathrin- and caveolin-dependent endocytosis. Chlorpromazine (CPMZ) and methyl-beta-cyclo-dextrin (MCD) were also used in order to inhibit clathrin- and caveolin-dependent endocytosis, respectively. We analyzed IGF1R internalization and co-localization with clathrin and CAV1 upon ligand binding, as well as the status of the IGF1R pathway, cellular proliferation, and the apoptosis of interfered and inhibited ES cells. We performed a high-throughput tyrosine kinase phosphorylation assay to analyze the effects of combining the IGF1R tyrosine kinase inhibitor AEW541 (AEW) with CPMZ or MCD on the intracellular phospho-proteome. We observed that IGF1R is internalized upon ligand binding in ES cells and that this process is dependent on clathrin or CAV1. The blockage of receptor internalization inhibited AKT and MAPK phosphorylation, reducing the proliferative rate of ES cells and increasing the levels of apoptosis. Combination of AEW with CPMZ or MCD largely enhanced these effects. CAV1 and clathrin endocytosis controls IGF1R internalization and signaling and has a profound impact on ES IGF1R-promoted survival signaling. We propose the combination of tyrosine-kinase inhibitors with endocytosis inhibitors as a new therapeutic approach to achieve a stronger degree of receptor inhibition in this, or other neoplasms dependent on IGF1R signaling.  相似文献   

18.
The aim of the present study is to evaluate the proliferation‐ and migration‐enhancing effects of ginseng and its component, ginsenoside (Rg1) on RSC96 Schwann cells. We investigated the molecular signaling pathways, which include: (1) survival signaling, IGFs‐IGFIR‐Akt‐Bcl2 and proliferative signaling, cell cycle factors and mitogen‐activated protein kinase (MAPK) pathways, (2) migrating and anti‐scar signaling, FGF‐2‐uPA‐MMPs.We treated RSC96 cells with different concentrations (100, 200, 300, 400, 500 µg ml?1) of ginseng and its constituent, Rg1 (5, 10, 15, 20, 25 µg ml?1). We observed a proliferative effect in a dose‐dependent manner by PCNA western blotting assay, MTT assay, and wound healing test. Furthermore, we also found in the results of western blotting assay, ginseng and Rg1 enhance protein expression of IGF‐I pathway regulators, cell cycle controlling proteins, and MAPK signaling pathways to promote the cell proliferation. In addition, ginseng and Rg1 also stimulated the FGF‐2‐uPA‐MMP 9 migrating pathway to enhance the migration of RSC96 Schwann cells. Using MAPK chemical inhibitors, U0126, SB203580, and SP600125, the proliferative effects of ginseng and Rg1 on RSC96 cells were identified to be MAPK signaling‐dependent. On the basis of the results, applying appropriate doses of ginseng and Rg1 with biomedical materials would be a potential approach for enhancing neuron regeneration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Neural stem cells proliferate and maintain multipotency when cultured in the presence of FGF2, but subsequent lineage commitment by the cells is nevertheless influenced by the exposure to FGF2. Here we show that FGF2 effects on neural stem cells are mediated, in part, by beta-catenin. Conversely, the effects of beta-catenin in neural stem cells depend in part upon whether there is concurrent fibroblast growth factor (FGF) signaling. FGF2 increases beta-catenin signaling through several different mechanisms including increased expression of beta-catenin mRNA, increased nuclear translocation of beta-catenin, increased phosphorylation of GSK-3beta, and tyrosine phosphorylation of beta-catenin. Overexpression of beta-catenin in the presence of FGF2 helps to maintain neural progenitor cells in a proliferative state. However, overexpression of beta-catenin in the absence of FGF2 enhances neuronal differentiation. Further, chromatin immunoprecipitation (ChIP) assays demonstrate that both beta-catenin and Lef1 bind directly to the neurogenin promoter, and luciferase reporter assays demonstrate that beta-catenin is directly involved in the regulation of neurogenin 1 and possibly other proneural genes when neural stem cells are cultured in the presence of FGF2. We suggest that the balance between the mitogenic effects and the proneural effects of beta-catenin is determined by the presence of FGF signaling.  相似文献   

20.
FGF and FGFR signaling in chondrodysplasias and craniosynostosis   总被引:2,自引:0,他引:2  
The first experimental mouse model for FGF2 in bone dysplasia was made serendipitously by overexpression of FGF from a constitutive promoter. The results were not widely accepted, rightfully drew skepticism, and were difficult to publish; because of over 2,000 studies published on FGF‐2 at the time (1993), only a few reported a role of FGF‐2 in bone growth and differentiation. However, mapping of human dwarfisms to mutations of the FGFRs shortly, thereafter, made the case that bone growth and remodeling was a major physiological function for FGF. Subsequent production of numerous transgenic and targeted null mice for several genes in the bone growth and remodeling pathways have marvelously elucidated the role of FGFs and their interactions with other genes. Indeed, studies of the FGF pathway present one of the best success stories for use of experimental genetics in functionally parsing morphogenetic regulatory pathways. What remains largely unresolved is the pleiotropic nature of FGF‐2. How does it accelerate growth in one cell then stimulate apoptosis or retard growth for another cell in the same type of tissue? Some of the answers may come through distinguishing the FGF‐2 protein isoforms, made from alternative translation start sites, these appear to have substantially different functions. Although we have made substantial progress, there is still much to be learned regarding FGF‐2 as a most complex, enigmatic protein. Studies of genetic models in mice and human FGFR mutations have provided strong evidence that FGFRs are important modulators of osteoblast function during membranous bone formation. However, there is some controversy regarding the effects of FGFR signaling in human and murine genetic models. Although significant progress has been made in our understanding of FGFR signaling, several questions remain concerning the signaling pathways involved in osteoblast regulation by activated FGFR. Additionally, little is known about the specific role of FGFR target genes involved in cranial bone formation. These issues need to be addressed in future in in vitro and in vivo approaches to better understand the molecular mechanisms of action of FGFR signaling in osteoblasts that result in anabolic effects in bone formation. J. Cell. Biochem. © 2005 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号