首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Pienitz  Reinhard  Smol  John P. 《Hydrobiologia》1993,269(1):391-404
The relationship between diatom (Bacillariophyceae) taxa preserved in surface lake sediments and measured limnological and environmental variables in 22 lakes near Yellowknife (N.W.T.) was explored using multivariate statistical methods. The study sites are distributed along a latitudinal gradient that includes a strong vegetational gradient of boreal forests in the south to arctic tundra conditions in the north. Canonical correspondence analysis (CCA) revealed that lakewater concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) each accounted for independent and statistically significant proportions of variation in the distribution of diatom taxa. Weighted-averaging (WA) models were developed to infer DIC and DOC from the relative abundances of the 76 most common diatom taxa. These models can now be used to infer past DIC and DOC concentrations from diatom assemblages preserved in sediment cores of lakes in the Yellowknife area, which may provide quantitative estimates of changes in lakewater chemistry related to past vegetational shifts at treeline.  相似文献   

2.
Limnological data (e.g., water chemistry, lakewater temperature, vegetation zone and degree of human impact) were collected from lakes spanning the Russian arctic treeline in three regions: on the Taimyr Peninsula and near the mouth of the Lena River, both in central arctic Siberia, and near the mouth of the Pechora River, western arctic Russia. Pearson correlation and canonical variates analyses revealed similar environmental gradients in all three regions. Variables expressing ionic composition of the water (i.e., cations, anions, dissolved inorganic carbon and conductivity) were highly intercorrelated, as were nutrients, chlorophyll a, particulate organic matter and metal (i.e., Fe and Mn) concentrations. Lakewater transparency was related to water colour (i.e., Fe, Mn and dissolved organic carbon) and productivity. Regional differences among the lakes were strong and appeared to reflect differences in geology, hydrology and human impact. For example, Na and Cl concentrations were related to proximity to the ocean in the Lena and Pechora River regions but not in the more inland Taimyr region. Extensive mining and smelting at Norilsk, on the Taimyr Peninsula, has apparently resulted in elevated major ion and metal concentrations in lakes closer to the city. Surface water temperatures, nutrients, and related variables were particularly useful for distinguishing lakes in different vegetation biomes. Forest lakes were typically warmer, with slightly elevated concentrations of dissolved organic carbon (DOC). Lakes in the forest–tundra zone often had higher concentrations of particulate organic matter, Fe and Mn. Tundra lakes were characterized by low nutrient and DOC concentrations. These data will facilitate the development of models that predict the outcome of future climatic change on arctic and subarctic aquatic ecosystems, as well as provide baseline data for future limnological studies in these remote regions.  相似文献   

3.
Chrysophycean scales were examined in surface sediments collected from 22 high mountain lakes on the southern slope of the Central Alps, some in Italy and some in Switzerland. The study area receives slightly acidic precipitation and summer lake pH ranges between 5.2 and 8.0. In each lake chrysophycean scale assemblage was dominated by one or two species and its composition was related to lakewater pH. Five short cores were examined in low-alkalinity lakes and evidence of recent lake acidification was found.  相似文献   

4.
Bos  D. G.  Cumming  B. F.  Smol  J. P. 《Hydrobiologia》1999,392(2):129-141
Cladoceran and anostracan species assemblages were identified from the surface sediments of 33 closed–basin lakes from the southern Interior Plateau of B.C. in order to explore their effectiveness as quantitative indicators of lakewater salinity and ionic composition. These lakes were chosen to maximize the range of lakewater salinity concentrations (freshwater through hypersaline) as well as brine composition (sulphate and carbonate dominated systems). The distribution of the anostracans and cladocerans were strongly correlated with lakewater salinity, ionic composition and lake depth. Based on these strong relationships significant predictive models were developed, using weighted-averaging techniques, to infer lakewater salinity based on the species composition of anostracans and cladocerans in surface sediments. Furthermore, models were developed to infer lake depth that are superior to previously used techniques based on the ratio of planktonic/littoral Cladocera. Given that the species composition of anostracans and cladocerans can be used to infer changes in salinity and lake level, and that their remains can be identified from sedimentary profiles, there is considerable potential in using their assemblages as paleolimnological indicators of past climatic conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Chironomids (Diptera: Chironomidae) in northern lakes are especially sensitive to climate change impacts. In addition, environmental factors other than direct temperature increase might play an important role in functioning of these keystone aquatic communities. We examined 31 lakes at the treeline ecotone in subarctic Finnish Lapland for their surface sediment chironomid fauna to assess the influence of different environmental factors on the communities. We aim to improve understanding of the climate-driven catchment and limnological factors, for the assessment of climate change impacts. Our results indicated that organic content of the sediment, total nitrogen, water depth and pH that are all likely to change under global warming had statistically significant influence on the chironomid assemblages and associated indicator taxa were assigned for these variables. In addition, a dissolved organic carbon (DOC) threshold (4 mg l−1) was observed that divided the study sites based on their chironomid composition. Sites with high DOC concentrations and benthic microbial mats had distinctive chironomid fauna from low-DOC sites without microbial mats indicating the significance of benthic versus planktonic productivity in the structure and functioning of polar lakes. The results provide important knowledge on chironomid-environmental relationships in climate-sensitive subarctic lakes and create basis for chironomid-based environmental change assessments in remote northern areas.  相似文献   

6.
Small, shallow lakes and ponds are often the dominant landscape features in many regions, but are comparably less studied than larger lakes. Shallow lakes are more likely to lack fish populations; however, it is often difficult to ascertain whether these sites were naturally fishless or lost their fish populations due to anthropogenic or natural stressors. We examined the distributional abundances of four Chaoborus species by identifying and enumerating their larval mandibles in the surface sediments of 146 randomly selected lakes from northwestern Ontario, Canada, to determine the key environmental gradients influencing chaoborid distributions. Chaoborus mandibles were encountered at 110 lakes and, in 65% of those lakes, total counts were ≥10. Direct gradient analyses were then used to show that lakewater total aluminum concentrations (negatively correlated with pH), lakewater sodium concentrations, lake surface area, and maximum water depth were significant predictors of the distributional abundances of Chaoborus. Generalized linear models indicated that Chaoborus species varied in their responses to significant environmental factors. C. (Sayomyia) was not significantly associated with any environmental variable and the abundances of larger chaoborids may be an important biotic factor affecting this taxon. Chaoborus americanus, an indicator of fishless lakes, was significantly correlated with all five key variables and demonstrated a clear threshold of occurrence in relatively small lakes (i.e., <10 ha in surface area). Furthermore, based on the occurrence and abundance of C. americanus, we estimated that 20% of the lakes we surveyed are currently fishless. These lakes significantly differ in several geomorphic and water-chemistry measures compared to the other study lakes.  相似文献   

7.
Long-term data are often lacking to effectively assess patterns of lake acidification and recovery. Fortunately, paleolimnological techniques can be used to infer past changes in lakewater acidity and related variables by means of biological indicators, such as diatom valves and chrysophyte scales, preserved in 210Pb-dated sediment cores. We summarize paleolimnological data that we have gathered from 36 Sudbury (Ontario) and 20 Adirondack Park (New York) lakes to estimate the magnitude of lake acidification and any subsequent recovery in these lake systems. In both regions, many lakes were shown to have acidified considerably, some over two pH units, since the 1850s. Although some recovery was noted in both lake regions, Sudbury lakes generally showed larger increases in inferred lakewater pH with recent declines in sulfur emissions. Possible explanations of these differences include the greater decrease in sulfate deposition in the Sudbury area, as well as generally longer residence times of lakes in Sudbury, perhaps allowing for more in-lake alkalinity generation. In addition, Sudbury lakes generally had higher pre-industrial pH levels, suggesting that lakes with higher natural buffering capacities are more likely to recover more quickly with declines in deposition, even if they had been acidified to a great extent.  相似文献   

8.
Relationships between surface sediment diatom assemblages and measured environmental variables from 77 lakes in the central Canadian arctic treeline region were examined using multivariate statistical methods. Lakes were distributed across the arctic treeline from boreal forest to arctic tundra ecozones, along steep climatic and environmental gradients. Forward selection in canonical correspondence analysis determined that dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), total nitrogen (TN), lake surface area, silica, lake‐water depth, and iron explained significant portions of diatom species variation. Weighted‐averaging (WA) regression and calibration techniques were used to develop inference models for DIC, DOC, and TN from the estimated optima of the diatom taxa to these environmental variables. Simple WA models with classical deshrinking produced models with the strongest predictive abilities for all three variables based on the bootstrapped root mean squared errors of prediction (RMSEP). WA partial least squares showed little improvement over the simpler WA models as judged by the jackknifed RMSEP. These models suggest that it is possible to infer trends in DIC, DOC, and TN from fossil diatom assemblages from suitably chosen lakes in the central Canadian arctic treeline region.  相似文献   

9.
We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.  相似文献   

10.
Diatom assemblages and limnological data were analyzed from 74 lakes spanning arctic treeline in three geographical regions of northern Russia: near the mouth of the Pechora River, on the Taimyr Peninsula, and near the mouth of the Lena River. Analysis of similarities indicated that diatom assemblages in tundra and forest lakes were significantly different from each other in all regions, with tundra lakes generally associated with higher abundances of small benthic Fragilaria Lyngbye taxa. Canonical correspondence analysis identified variables related to ion concentrations (e.g. Na + , dissolved inorganic carbon), lake depth, silica concentrations, and surface water temperatures as factors that explained significant amounts of variation in the diatom assemblages. Across treeline, the generally higher surface water temperatures of the forested lakes consistently accounted for a significant proportion of the diatom distribution patterns. Major ion concentrations also explained significant amounts of variation in the diatom assemblages across treeline for all three regions; however, regional trends were most likely influenced by local factors (i.e. ocean proximity or anthropogenic activities). The importance of climatic gradients across treeline (e.g. temperature) diatom distributions provides additional evidence that diatoms may be useful as paleoclimatic indicators. However, combination of the three calibration sets revealed that local water chemistry determinants (e.g. lithology, marine influence) overrode the influence of climatic gradients in explaining diatom distributions, suggesting that regional differences must be minimized for successful combination of geographically separate calibration sets.  相似文献   

11.
Cumming  Brian F.  Smol  John P. 《Hydrobiologia》1993,(1):179-196
Diatoms were identified and enumerated from the surface sediments of 65 lakes located on the Cariboo and Chilcotin Plateaux (British Columbia, Canada). These lakes span a large gradient in lakewater ionic concentration (fresh through hypersaline) and composition, as well as other physical/chemical variables. Almost all of the study lakes had higher salinities in the late-summer than in the spring. The lakes with spring salinities >8 g l–1 showed the largest seasonal increases in salinity. Ionic composition was similar in the spring and late-summer for most lakes. Both ionic concentration (i.e. salinity) and composition were important environmental variables that could account for the different diatom floras in the lakes. Diatom assemblages characteristic of carbonate-dominated and sulfate-dominated waters were identified. Other variables such as water depth and phosphorus concentration were also important.The majority (87%) of diatom taxa had estimated salinity optima < 3 g l–1 Halophilic diatom taxa had broader tolerances to salinity when compared to the fresh water taxa, however taxa with narrow and broad tolerances could be identified across the salinity gradient. Species diversity was weakly but significantly correlated to lakewater salinity (r 2 = 0.18 to 0.3, P < 0.05).Salinity inference models were developed based on the relationship between the diatom assemblages and the spring, late-summer and average salinity. The correlations between the measured and diatominferred salinity, based on the spring (r = 0.95), late-summer (r = 0.94) and average (r = 0.95) salinity data, are high because there was an extremely strong correlation (r = 0.98) between the log transformed spring and late-summer measured salinities. These salinity reconstruction models provide a tool that can be used to infer past climatic changes as part of paleolimnological studies from appropriate closed-basin lakes in British Columbia.  相似文献   

12.
Low‐temperature growth limitation largely determines alpine treeline position globally, but treeline elevation also varies locally at a range of scales in response to multiple biotic and abiotic factors. In this study, we conceptualise how variability in treeline elevation is related to abiotic factors that act as thermal modifiers, physiological stressors, or disturbance agents. We then present a novel analytical framework for quantifying how abiotic factors influence treeline elevation at different spatial scales using New Zealand Nothofagus treelines as a case study. We delineated Nothofagus treelines in a GIS, along which we extracted data for treeline elevation and eight abiotic explanatory variables at 54 000 points. Each location was classified at each of five spatial scales based on nested river catchments, ranging from large regional to small hillslope catchments. We used hierarchical linear models to partition the variation in both treeline elevation and the eight abiotic variables by spatial scale, and then quantified the relationships between these at each spatial scale in turn. Nothofagus treeline elevation varied from 800–1740 m a.s.l. across New Zealand. Abiotic factors explained 82% of the variation in treeline elevation at the largest (regional) scale and 44–52% of variation at the four finer scales. Broad‐scale variation in Nothofagus treeline elevation was strongly associated with thermal modifiers, consistent with the idea that treelines coincide with a temperature‐driven, physiological limit. However, much of the finer‐scale variation in treeline elevation was explained by a combination of thermal, physiological stress‐related, and disturbance variables operating at different spatial scales. The conceptual model and analytical methods developed here provide a general framework for understanding treeline variation at different spatial scales.  相似文献   

13.
Tree rings are widely used long-term proxy data which, if combined with long-term instrumental climate records, can provide excellent information on global climate variability. This research aimed to determine whether interannual climate-growth responses in Alpine treeline forests are stationary over time. We used tree-ring width chronologies of Larix decidua (European larch) from 17 sites and monthly temperatures and precipitation data for the period 1800-1999. Climate-growth relationships were assessed with correlation and response functions, and their stationarity and consistency over time were measured using moving correlation. Tree-ring chronologies showed similar interannual variations over the last two centuries, suggesting that the same climatic factors synchronously limited growth at most sites. The most sensitive variables showed significant transient responses varying within the time period, indicating a possible deviation from the uniformitarian principle applied to dendroclimatology. If these findings are confirmed in future studies on other species and in other regions, we suggest that time-dependent variables should be taken into account to avoid overestimation of treeline advance, future forest carbon storage in temperature-limited environments and inaccurate reconstruction of past climate variability.  相似文献   

14.
Banks Island, in the Canadian Arctic Archipelago, has been identified as an important reference site for studies of environmental change, especially as it relates to climatic warming. The island is logistically manageable (i.e. researchers can survey the entire island in one field season) and, most importantly, spans three major ecoclimatic regions supporting a diverse and large bird and mammal population. Developing upon earlier work by the authors describing the limnology of Banks Island, this current study: (1) examines which physical and chemical limnological variables influence diatom assemblages in this relatively lush island; and (2) explores variations in the diatom assemblages by ecoclimatic zones. The relationship between diatom taxa from a 36 lake/pond surface sediment calibration set and a suite of limnological variables was explored using multivariate statistics. Dominant diatom species varied based on changing limnological characteristics, particularly between the colder, ultra-oligotrophic lakes in the more northern High Arctic regions compared to the warmer, more nitrogen-rich sites in the Low Arctic regions of Banks Island. Exploration of diatom ecoclimatic and environmental preferences revealed interesting relationships, including the development of a diatom-based transfer function that could be used to track overall trends on lakewater nitrogen concentrations, which may enable future paleolimnological studies to track shifts in nutrient levels and climatic, and other environmental changes. Handling editor: J. Padisak  相似文献   

15.
Recent research on relationships between diatoms and pH suggests that the genus Cyclotella exhibits a strong relationship with lake acidity, being almost totally absent below pH 5.5. This decline has been used as an indicator of lake acidification in paleolimnological studies. In this study C. stelligera V.H. and C. kützingiana Thwaites were abundant in Precambrian Shield lakes with pH as low as 4.5. Cyclotella comta (Ehr.) Kütz. was found in lakes of pH < 5.5, but maximum abundance was observed in lakes of pH > 5.5. Cyclotella michiganiana Skv. was found in lakes of pH < 6.0. These results indicate that the use of C. stelligera, C. kützingiana, and possibly C. comta, in paleolimnological investigations of lake acidification, should be approached with caution. These taxa may exhibit a decline in abundance with decreasing lakewater pH, but this is partially a morphometric effect not necessarily related to anthropogenic acidification.  相似文献   

16.
The relationships between 23 scaled chrysophyte taxa (Chrysophyceae and Synurophyceae) and measured limnological variables in 62 Adirondack, New York, drainage lakes were examined by canonical correspondence analysis (CCA). The major proportion of variation in chrysophyte species distributions was strongly related to total monomeric Al (Alm) and Mg concentrations, and their close correlates pH, Na, Ca, and acid-neutralizing capacity (ANC). Total monomeric Al concentrations explain a greater proportion of species variation than pH, suggesting that Alm concentrations may be more important in governing the distribution of chrysophyte taxa in these lakes. Gaussian logit (GL) and linear logit (LL) regressions of the relative percentages of individual chrysophyte taxa to lakewater pH and Alm concentrations and the examination of pH–Alm response surfaces show that many chrysophyte taxa exhibit unique responses to these environmental gradients; taxa can be characterized as alkaline, circumneutral, acidic, and pH indifferent. Within each of these groups, taxa can be characterized further based upon their optima and tolerances to Alm concentrations. Chrysophyte indicator species (i.e. a taxon with a strong statistical relationship to the environmental variable of interest, a well-defined optimum, and a narrow tolerance to the variable of interest) for pH include Mallomonas hindonii, M. crassisquama, M. pseudocoronata, and Synura uvella; M. hindonii, M. crassisquama, M. pseudocoronata, S. petersenii, and S. spinosa are good indicators of Alm concentrations. Highly significant predictive models were developed to infer lakewater pH and Alm concentrations from the relative percentages of chrysophyte scales in the study lakes. Model evaluation was based on their correlation coefficients and the root-mean-squared error of prediction (RMSE) derived from bootstrapping. Weighted averaging regression and calibration with tolerance down-weighting (i.e. weighting taxa inversely to their variance) produced superior results when compared to the computationally and data-demanding maximum likelihood methods and to simple weighted averaging regression and calibration.  相似文献   

17.
Interest in climate change research has taken on new relevance with the realization that human activities, such as the accelerated release of the so‐called greenhouse gases, may be altering the thermal properties of our atmosphere. Important social, economic, and scientific questions include the following. Is climate changing? If so, can these changes be related to human activities? Are episodes of extreme weather, such as droughts or hurricanes, increasing in frequency? Long‐term meteorological data, on broad spatial and temporal scales, are needed to answer these questions. Unfortunately, such data were never gathered; therefore, indirect proxy methods must be used to infer past climatic trends. A relatively untapped source of paleoclimate data is based on hindcasting past climatic trends using the environmental optima and tolerances of algae (especially diatoms) preserved in lake sediment profiles. Paleophycologists have used two approaches. Although still controversial, attempts have been made to directly infer climatic variables, such as temperature, from past algal assemblages. The main assumption with these types of analyses is that species composition is either directly related to temperature or that algal assemblages are related to some variable linearly related to temperature. The second more commonly used approach is to infer a limnological variable (e.g. water chemistry, lake ice cover, etc.) that is related to climate. Although paleolimnological approaches are broadly similar across climatic regions, the environmental gradients that paleophycologists track can be very different. For example, climatic inferences in polar regions have focused on past lake ice conditions, whereas in lakes near arctic treeline ecotones, paleophycologists have developed methods to infer past lakewater‐dissolved organic carbon, because this variable has been linked to the density of coniferous trees in a drainage basin. In closed‐basin lakes in arid and semiarid regions, past lakewater salinity, which can be robustly reconstructed from fossil algal assemblages, is closely tied to the balance of evaporation and precipitation (i.e. drought frequency). Some recent examples of paleophycolgical work include the documentation of striking environmental changes in high arctic environments in the 19th century believed to be related to climate warming. Meanwhile, diatom‐based reconstructions of salinity (e.g. the Great Plains of North America and Africa) have revealed prolonged periods of droughts over the last few millennia that have greatly exceeded those recorded during recent times. Marked climatic variability that is outside the range captured by the instrumental record has a strong bearing on sustainability of human societies. Only with a long‐term perspective can we understand natural climatic variability and the potential influences of human activities on climate and thereby increase our ability to understand future climate.  相似文献   

18.
In the region northeast of Wawa, Ontario (Canada), many circumneutral lakes downwind of a nearby iron-sintering plant were strongly acidified (pH 3–4) in response to the emissions of large amounts of sulfur dioxide from 1939–1998. Following closure of the plant in 1998, lakewater pH has returned to circumneutral conditions due to the high buffering capacity of the local geological substrate. Prior paleolimnological analyses of dated sediment cores have detected some biological recovery among algal communities (diatoms and chrysophytes), although they have not returned to their pre-impact assemblages. Here we take a broader ecosystem approach, and build upon the algal analyses by examining cladoceran sedimentary assemblages, and spectrally-inferred chlorophyll a and dissolved organic carbon (DOC) from the same dated sediment cores. Similar to the algal communities, recent cladoceran sedimentary assemblages from three impacted lakes remain in an altered state relative to the pre-impact period (for example, increased relative abundances of Chydorus brevilabris and reduced cladoceran density in sediments). However, trends in the spectrally-inferred chlorophyll a and DOC were mixed, with long-term decreases in the study lake closest to the plant and long-term increases within the other lakes. Collectively, the multi-proxy paleolimnological analyses of these markedly acidified lakes demonstrate the delayed biological recovery from acidification (and differences in timing) across multiple trophic levels, despite the near-elimination of acid deposition almost a decade previously, which led to a striking recovery in lakewater pH and increased food availability.  相似文献   

19.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1,950 m a.s.l.), treeline (2,110 m a.s.l.) and within the krummholz belt (2,180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5°C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006–2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e., year-to-year) variability in timing and dynamic of wood formation of P. cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.  相似文献   

20.
Diatom-based paleolimnological techniques were used to study 14 lakes from two regions of Nova Scotia which represent regions of high and low sulphate deposition. Using decadal scale intervals, changes in diatom assemblages and diatom-inferred pH were tracked in relation to deposition of anthropogenic-sourced strong acids. Eight study lakes were located in Kejimkujik National Park in the southwestern part of the province, which receives an annual sulphate deposition (2000–2002) of ~10.5 kg ha−1 yr−1. These lakes showed significant changes in diatom assemblages with overall diatom-inferred acidification of ~0.5 pH units starting between 1925 and 1940, with the timing of acidification related to pre-industrial (or pre−1850) lakewater pH. Six study lakes were located in Cape Breton Highlands National Park, in northern Nova Scotia, a region of lower sulphate deposition. These lakes did not show any consistent trends in diatom assemblages or inferred pH values consistent with recent acidic deposition, but rather variations that may be related to climatic influences. Nova Scotia lakes that have been most impacted by acidic deposition had the lowest pre-industrial lakewater pH values and were in an area of relatively high sulphate deposition. Handling editor: K. Martens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号