首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria in endothelial cells remodel morphologically when supraphysiological cyclic stretch is exerted on the cells. During remodeling, mitochondria become shorter, but how they do so remains elusive. Drp1 is a regulator of mitochondrial morphologies. It shortens mitochondria by shifting the balance from mitochondrial fusion to fission. In this study, we hypothesized that Drp1 activation is involved in mitochondrial remodeling under supraphysiological cyclic stretch. To verify the involvement of Drp1, its activation was first quantified with Western blotting, but Drp1 was not significantly activated in endothelial cells under supraphysiological cyclic stretch. Next, Drp1 activation was inhibited with Mdivi-1, but this did not inhibit mitochondrial remodeling. Intracellular Ca2+ increase activates Drp1 through calcineurin. First, we inhibited the intracellular Ca2+ increase with Gd3+ and thapsigargin, but this did not inhibit mitochondrial remodeling. Next, we inhibited calcineurin with cyclosporin A, but this also did not inhibit mitochondrial remodeling. These results indicate that mitochondrial remodeling under supraphysiological cyclic stretch is independent of Drp1 activation. In endothelial cells under supraphysiological cyclic stretch, reactive oxygen species (ROS) are generated. Mitochondrial morphologies are remodeled by ROS generation. When ROS was eliminated with N-acetyl-L-cysteine, mitochondrial remodeling was inhibited. Furthermore, when the polymerization of the actin cytoskeleton was inhibited with cytochalasin D, mitochondrial remodeling was also inhibited. These results suggest that ROS and actin cytoskeleton are rather involved in mitochondrial remodeling. In conclusion, the present results suggest that mitochondrial remodeling in endothelial cells under supraphysiological cyclic stretch is induced by ROS in association with actin cytoskeleton rather than through Drp1 activation.  相似文献   

2.
Fibronectin plays an important role in vascular remodeling. A functional interaction between mechanical stimuli and locally produced vasoactive agents is suggested to be crucial for vascular remodeling. We examined the effect of mechanical stretch on fibronectin gene expression in vascular smooth muscle cells and the role of vascular angiotensin II in the regulation of the fibronectin gene in response to stretch. Cyclic stretch induced an increase in vascular fibronectin mRNA levels that was inhibited by actinomycin D and CV11974, an angiotensin II type 1 receptor antagonist; cycloheximide and PD123319, an angiotensin II type 2 receptor antagonist, did not affect the induction. In transfection experiments, fibronectin promoter activity was stimulated by stretch and inhibited by CV11974 but not by PD123319. DNA-protein binding experiments revealed that cyclic stretch enhanced nuclear binding to the AP-1 site, which was partially supershifted by antibody to c-Jun. Site-directed mutation of the AP-1 site significantly decreased the cyclic stretch-mediated activation of fibronectin promoter. Furthermore, antisense c-jun oligonucleotides decreased the stretch-induced stimulation of the fibronectin promoter activity and the mRNA expression. These results suggest that cyclic stretch stimulates vascular fibronectin gene expression mainly via the activation of AP-1 through the angiotensin II type 1 receptor.  相似文献   

3.
Evaluation of mechanical environment on cellular function is a major field of study in cellular engineering. Endothelial cells lining the entire vascular lumen are subjected to pulsatile blood pressure and flow. Mechanical stresses caused by such forces determine function of arteries and their remodeling. Critical values of mechanical stresses contribute to endothelial damage, plaque formation and atherosclerosis. A device to impose cyclic strain on cultured cells inside an incubator was designed and manufactured operating with different load amplitudes, frequencies, numbers of cycles and ratios of extension to relaxation. Endothelial cells cultured on collagen coated silicon scaffolds were subjected to cyclic loading. Effects of mechanical loading on cell morphology were quantified using image processing methods. Results showed change in cell orientation from a randomly oriented before the test up to 80 degrees alignment from load axis after loading. Endothelial cells were elongated with shape index reductions up to 47% after cyclic stretch. By increase of strain amplitude, loading frequency and number of cycles, significant decrease in shape index and significant increase in orientation angle were observed. Change of load waveform similar to arterial pulse pressure waveform resulted in alteration of cell alignment with 9.7% decrease in shape index, and 10.8% increase in orientation angle. Results of cyclic loading tests in a disturbed environment with elevated PH showed lack of remodeling. It was concluded that tensile loading of endothelial cells influences cell morphology and alignment, a mechanism for structural regulation, functional adaptation and remodeling. Disturbed environment results in endothelial dysfunction and injury.  相似文献   

4.
We previously demonstrated that cyclic stretch of cardiac myocytes activates paracrine signaling via vascular endothelial growth factor (VEGF) leading to angiogenesis. The present study tested the hypothesis that cyclic stretch upregulates tyrosine kinase receptors in rat coronary microvascular endothelial cells (RCMEC) and human umbilical vein endothelial cells (HUVEC). VEGF receptor-2 (Flk-1) protein levels increased in HUVEC and RCMEC in a time-dependent manner, but the increase occurred much earlier in RCMEC than in HUVEC. The enhancement of Flk-1 protein level was not inhibited by addition of VEGF neutralizing antibodies, indicating that VEGF is not involved in stretch-induced Flk-1 expression. VEGF receptor-1 (Flt-1) protein and mRNA were not changed by stretch. However, Tie-2 and Tie-1 protein levels increased in RCMEC. Angiopoietin-1 and -2, the ligands for Tie-2, increased in cardiac myocytes subjected to cyclic stretch but were not affected by stretch in endothelial cells (EC). Stretch or incubation of RCMEC with VEGF increased cell proliferation moderately, whereas stretch + VEGF had an additive effect on proliferation. Mechanical stretch induces upregulation of the key tyrosine kinase receptors Flk-1, Tie-2, and Tie-1 in vascular EC, which underlies the increase in sensitivity of EC to growth factors and, therefore, facilitates angiogenesis. These in vitro findings support the concept that stretch of cardiac myocytes and EC plays a key role in coronary angiogenesis.  相似文献   

5.
Hypertrophic scar (HS) formation is a skin fibroproliferative disease that occurs following a cutaneous injury, leading to functional and cosmetic impairment. To date, few therapeutic treatments exhibit satisfactory outcomes. The mechanical force has been shown to be a key regulator of HS formation, but the underlying mechanism is not completely understood. The Piezo1 channel has been identified as a novel mechanically activated cation channel (MAC) and is reportedly capable of regulating force-mediated cellular biological behaviors. However, the mechanotransduction role of Piezo1 in HS formation has not been investigated. In this work, we found that Piezo1 was overexpressed in myofibroblasts of human and rat HS tissues. In vitro, cyclic mechanical stretch (CMS) increased Piezo1 expression and Piezo1-mediated calcium influx in human dermal fibroblasts (HDFs). In addition, Piezo1 activity promoted HDFs proliferation, motility, and differentiation in response to CMS. More importantly, intradermal injection of GsMTx4, a Piezo1-blocking peptide, protected rats from stretch-induced HS formation. Together, Piezo1 was shown to participate in HS formation and could be a novel target for the development of promising therapies for HS formation.Subject terms: Cell signalling, Mechanisms of disease  相似文献   

6.
Mechanical forces associated with fluid flow and/or circumferential stretch are sensed by renal epithelial cells and contribute to both adaptive or disease states. Non‐selective stretch‐activated ion channels (SACs), characterized by a lack of inactivation and a remarkably slow deactivation, are active at the basolateral side of renal proximal convoluted tubules. Knockdown of Piezo1 strongly reduces SAC activity in proximal convoluted tubule epithelial cells. Similarly, overexpression of Polycystin‐2 (PC2) or, to a greater extent its pathogenic mutant PC2‐740X, impairs native SACs. Moreover, PC2 inhibits exogenous Piezo1 SAC activity. PC2 coimmunoprecipitates with Piezo1 and deletion of its N‐terminal domain prevents both this interaction and inhibition of SAC activity. These findings indicate that renal SACs depend on Piezo1, but are critically conditioned by PC2.  相似文献   

7.
Increase in vascular permeability occurs under many physiological conditions such as wound repair, inflammation, and thrombotic reactions and is central in diverse human pathologies, including tumor-induced angiogenesis, ocular diseases, and septic shock. Thrombin is a pro-coagulant serine protease, which causes the local loss of endothelial barrier integrity thereby enabling the rapid extravasation of plasma proteins and the local formation of fibrin-containing clots. Available information suggests that thrombin induces endothelial permeability by promoting actomyosin contractility through the Rho/ROCK signaling pathway. Here we took advantage of pharmacological inhibitors, knockdown approaches, and the emerging knowledge on how permeability factors affect endothelial junctions to investigate in detail the mechanism underlying thrombin-induced endothelial permeability. We show that thrombin signals through PAR-1 and its coupled G proteins Galpha(12/13) and Galpha(11/q) to induce RhoA activation and intracellular calcium elevation, and that these events are interrelated. In turn, this leads to the stimulation of ROCK, which causes actin stress-fiber formation. However, this alone is not sufficient to account for thrombin-induced permeability. Instead, we found that protein kinase C-related kinase, a Rho-dependent serine/threonine kinase, is activated in endothelial cells upon thrombin stimulation and that its expression is required for endothelial permeability and the remodeling of cell-extracellular matrix and cell-cell adhesions. Our results demonstrate that the signal initiated by thrombin bifurcates at the level of RhoA to promote changes in the cytoskeletal architecture through ROCK, and the remodeling of focal adhesion components through protein kinase C-related kinase. Ultimately, both pathways converge to cause cell-cell junction disruption and provoke vascular leakage.  相似文献   

8.
Calcium regulates the PI3K-Akt pathway in stretched osteoblasts   总被引:6,自引:0,他引:6  
Mechanical loading plays a vital role in maintaining bone architecture. The process by which osteoblasts convert mechanical signals into biochemical responses leading to bone remodeling is not fully understood. The earliest cellular response detected in mechanically stimulated osteoblasts is an increase in intracellular calcium concentration ([Ca(2+)](i)). In this study, we used the clonal mouse osteoblast cell line MC3T3-E1 to show that uniaxial cyclic stretch induces: (1) an immediate increase in [Ca(2+)](i), and (2) the phosphorylation of critical osteoblast proteins that are implicated in cell proliferation, gene regulation, and cell survival. Our data suggest that cyclic stretch activates the phosphoinositide 3-kinase (PI3K) pathway including: PI3K, Akt, FKHR, and AFX. Moreover, cyclic stretch also causes the phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase. Attenuation in the level of phosphorylation of these proteins was observed by stretching cells in Ca(2+)-free medium, using intra- (BAPTA-AM) and extracellular (BAPTA) calcium chelators, or gadolinium, suggesting that influx of extracellular calcium plays a significant role in the early response of osteoblasts to mechanical stimuli.  相似文献   

9.
10.
Kaunas R  Usami S  Chien S 《Cellular signalling》2006,18(11):1924-1931
Cyclic mechanical stretch associated with pulsatile blood pressure can modulate cytoskeletal remodeling and intracellular signaling in vascular endothelial cells. The aim of this study was to evaluate the role of stretch-induced actin stress fiber orientation in intracellular signaling involving the activation of c-jun N-terminal kinase (JNK) in bovine aortic endothelial cells. A stretch device was designed with the capability of applying cyclic uniaxial and equibiaxial stretches to cultured endothelial cells, as well as changing the direction of cyclic uniaxial stretch. In response to 10% cyclic equibiaxial stretch, which did not result in stress fiber orientation, JNK activation was elevated for up to 6 h. In response to 10% cyclic uniaxial stretch, JNK activity was only transiently elevated, followed by a return to basal level as the actin stress fibers became oriented perpendicular to the direction of stretch. After the stress fibers had aligned perpendicularly and the JNK activity had subsided, a 90-degree change in the direction of cyclic uniaxial stretch reactivated JNK, and this activation again subsided as stress fibers became re-oriented perpendicular to the new direction of stretch. Disrupting actin filaments with cytochalasin D blocked the stress fiber orientation in response to cyclic uniaxial stretch and it also caused the uniaxial stretch-induced JNK activation to become sustained. These results suggest that stress fiber orientation perpendicular to the direction of stretch provides a mechanism for both structural and biochemical adaptation to cyclic mechanical stretch.  相似文献   

11.
The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.  相似文献   

12.
Ventilator-induced lung injury syndromes are characterized by profound increases in vascular leakiness and activation of inflammatory processes. To explore whether excessive cyclic stretch (CS) directly causes vascular barrier disruption or enhances endothelial cell sensitivity to edemagenic agents, human pulmonary artery endothelial cells (HPAEC) were exposed to physiologically (5% elongation) or pathologically (18% elongation) relevant levels of strain. CS produced rapid (10 min) increases in myosin light chain (MLC) phosphorylation, activation of p38 and extracellular signal-related kinase 1/2 MAP kinases, and actomyosin remodeling. Acute (15 min) and chronic (48 h) CS markedly enhanced thrombin-induced MLC phosphorylation (2.1-fold and 3.2-fold for 15-min CS at 5 and 18% elongation and 2.1-fold and 3.1-fold for 48-h CS at 5 and 18% elongation, respectively). HPAEC preconditioned at 18% CS, but not at 5% CS, exhibited significantly enhanced thrombin-induced reduction in transendothelial electrical resistance but did not affect barrier protective effect of sphingosine-1-phosphate (0.5 microM). Finally, expression profiling analysis revealed a number of genes, including small GTPase rho, apoptosis mediator ZIP kinase, and proteinase activated receptor-2, to be regulated by CS in an amplitude-dependent manner. Thus our study demonstrates a critical role for the magnitude of CS in regulation of agonist-mediated pulmonary endothelial cell permeability and strongly suggests phenotypic regulation of HPAEC barrier properties by CS.  相似文献   

13.
Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A2, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A2 synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-κβ signaling pathway.  相似文献   

14.
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease.Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis.Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.  相似文献   

15.
The visco-elastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the visco-elastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast's processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the visco-elastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular, and immune cell populations residing within connective tissue.  相似文献   

16.
The vascular endothelium is a dynamic cellular interface between the vessel wall and the bloodstream, where it regulates the physiological effects of humoral and biomechanical stimuli on vessel tone and remodeling. With respect to the latter hemodynamic stimulus, the endothelium is chronically exposed to mechanical forces in the form of cyclic circumferential strain, resulting from the pulsatile nature of blood flow, and shear stress. Both forces can profoundly modulate endothelial cell (EC) metabolism and function and, under normal physiological conditions, impart an atheroprotective effect that disfavors pathological remodeling of the vessel wall. Moreover, disruption of normal hemodynamic loading can be either causative of or contributory to vascular diseases such as atherosclerosis. EC-matrix interactions are a critical determinant of how the vascular endothelium responds to these forces and unquestionably utilizes matrix metalloproteinases (MMPs), enzymes capable of degrading basement membrane and interstitial matrix molecules, to facilitate force-mediated changes in vascular cell fate. In view of the growing importance of blood flow patterns and mechanotransduction to vascular health and pathophysiology, and considering the potential value of MMPs as therapeutic targets, a timely review of our collective understanding of MMP mechanoregulation and its impact on the vascular endothelium is warranted. More specifically, this review primarily summarizes our current knowledge of how cyclic strain regulates MMP expression and activation within the vascular endothelium and subsequently endeavors to address the direct and indirect consequences of this on vascular EC fate. Possible relevance of these phenomena to vascular endothelial dysfunction and pathological remodeling are also addressed.  相似文献   

17.
Application of cyclic stretch (10% at 1 hertz) to vascular smooth muscle cells (SMC) increased L-arginine uptake and this was associated with a specific increase in cationic amino acid transporter-2 (CAT-2) mRNA. In addition, cyclic stretch stimulated L-arginine metabolism by inducing arginase I mRNA and arginase activity. In contrast, cyclic stretch inhibited the catabolism of L-arginine to nitric oxide (NO) by blocking inducible NO synthase expression. Exposure of SMC to cyclic stretch markedly increased the capacity of SMC to generate L-proline from L-arginine while inhibiting the formation of polyamines. The stretch-mediated increase in L-proline production was reversed by methyl-L-arginine, a competitive inhibitor of L-arginine transport, by hydroxy-L-arginine, an arginase inhibitor, or by the ornithine aminotransferase inhibitor L-canaline. Finally, cyclic stretch stimulated collagen synthesis and the accumulation of type I collagen, which was inhibited by L-canaline. These results demonstrate that cyclic stretch coordinately stimulates L-proline synthesis by regulating the genes that modulate the transport and metabolism of L-arginine. In addition, they show that stretch-stimulated collagen production is dependent on L-proline formation. The ability of hemodynamic forces to up-regulate L-arginine transport and direct its metabolism to L-proline may play an important role in stabilizing vascular lesions by promoting SMC collagen synthesis.  相似文献   

18.
Vascular endothelial growth factor (VEGF) and basic (b) fibroblast growth factor (FGF-2/bFGF) are involved in vascular development and angiogenesis. Pulmonary artery smooth muscle cells express VEGF and FGF-2 and are subjected to mechanical forces during pulsatile blood flow. The effect of stretch on growth factor expression in these cells is not well characterized. We investigated the effect of cyclic stretch on the expression of VEGF and FGF-2 in ovine pulmonary artery smooth muscle cells. Primary confluent cells from 6-wk-old lambs were cultured on flexible silicon membranes and subjected to cyclic biaxial stretch (1 Hz; 5-25% stretch; 4-48 h). Nonstretched cells served as controls. Expression of VEGF and FGF-2 was determined by Northern blot analysis. Cyclic stretch induced expression of both VEGF and FGF-2 mRNA in a time- and amplitude-dependent manner. Maximum expression was found at 24 h and 15% stretch (VEGF: 1.8-fold; FGF-2: 1.9-fold). These results demonstrate that mechanical stretch regulates VEGF and FGF-2 gene expression, which could play a role in pulmonary vascular development or in postnatal pulmonary artery function or disease.  相似文献   

19.
20.
Dysfunctions of vascular smooth muscle cells (VSMCs) play crucial roles in vascular remodeling in hypertension, which correlates with pathologically elevated cyclic stretch due to increased arterial pressure. Recent researches reported that autophagy, a life-sustaining process, was increased in hypertension. However, the mechanobiological mechanism of VSMC autophagy and its potential roles in vascular remodeling are still unclear. Using renal hypertensive rats in vivo and FX5000 stretch application Unit in vitro, the autophagy of VSMCs was detected. The results showed that LC3II remarkably enhanced in hypertensive rats and 15% cyclic stretch (mimic the pathologically increased mechanical stretch in hypertension), and the activity of mammalian target of rapamycin (mTOR) was suppressed in 15% cyclic stretch. Administration of autophagy inhibitors, bafilomycin A1 and chloroquine, repressed VSMC proliferation efficiently, but did not affect the degradation of two important nuclear envelope (NE) proteins, lamin A/C and emerin. Using RNA interference to decline the expression of lamin A/C and emerin, respectively, we discovered that autophagy was upregulated under both static and 5% cyclic stretch conditions, accompanying with the decreased mTOR activity. During 15% cyclic stretch application, mTOR inhibition was responsible for autophagy elevation. Chloroquine administration in vivo inhibited the expression of PCNA (marker of proliferation) of abdominal aorta in hypertensive rats. Altogether, these results demonstrated that pathological cyclic stretch suppresses the expression of lamin A/C and emerin which subsequently represses mTOR pathway so as to induce autophagy activation. Blocking autophagic flux may be a practicable way to relieve the pathological vascular remodeling in hypertensive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号