首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Several lines of evidence point to the central role of WNT signaling in the initiation of intestinal tumorigenesis, most often due to loss of APC, a negative regulator of the WNT-βCATENIN/TCF pathway. Modeling human colon cancers in mice through loss of Apc has shown that inappropriate activation of Wnt signaling is sufficient to induce adenoma formation. More recent analyses have also demonstrated a key role for HEDGEHOG-GLI (HH-GLI) signaling in human colon cancers. However, how the WNT and HH pathways interact during intestinal development, homeostasis and cancer is not clear. Marker analyses suggest predominant paracrine signaling from rare Shh producing cells in the crypt’s bottom to adjacent Gli1+ mesenchymal cells in normal adult mice. Using conditional KO models, we show that inhibition of the function of the critical Hh mediator Smoothened (Smo) rescues the lethality and intestinal phenotypes of loss of Apc. The results uncover an essential role of the Hh pathway in tumors induced by hyperactive Wnt signaling, suggest the action of the Hh pathway in parallel or downstream of Wnt signaling, and validate this model for its use in preclinical work testing Hh pathway antagonists.  相似文献   

3.
Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.  相似文献   

4.
A structure-activity relationship study to elucidate the structural basis for hedgehog (Hh) signaling inhibition by vitamin D3 (VD3) was performed. Functional and non-functional regions of VD3 and VD2 were obtained through straightforward synthetic means and their biological activity was determined in a variety of cell-based assays. Several of these compounds inhibited Hh signaling at levels comparable to the parent VD3 with no effects on canonical vitamin D signaling. Most notably, compounds 5 and 9, demonstrated potent inhibition of the Hh pathway, exhibited no binding affinity for the vitamin D receptor (VDR), and did not activate VDR in cell culture. In addition, several compounds exhibited anti-proliferative activity against two human cancer cell lines through a mechanism distinct from the Hh or VDR pathways, suggesting a new cellular mechanism of action for this class of compounds.  相似文献   

5.
The hedgehog (Hh) signaling pathway is a key regulator during embryonic development, while in adults, it has limited functions such as stem cell maintenance and tissue repair. The aberrant activity of the Hh signaling in adults has been linked to numerous human cancers. Inhibition of Hh signaling therefore represents a promising approach toward novel anticancer therapies. The Smoothened (Smo) receptor mediates Hh signaling. Here we report a new series of Smo antagonists which were obtained by a scaffold hopping strategy. Compounds from this new scaffold demonstrated decent inhibition of Hh pathway signaling. The new scaffold can serve as a starting point for further optimization.  相似文献   

6.
The Hedgehog (Hh) signaling pathway plays a significant role in the regulation of cell growth and differentiation during embryonic development. Since activation of the Hh signaling pathway is implicated in several types of human cancers, inhibitors of this pathway could be promising anticancer agents. Using high throughput screening, thieno[3,2-c]quinoline-4-one derivative 9a was identified as a compound of interest with potent in vitro activity but poor metabolic stability. Our efforts focused on enhancement of in vitro inhibitory activity and metabolic stability, including core ring conversion and side chain optimization. This led to the discovery of pyrrolo[3,2-c]quinoline-4-one derivative 12b, which has a structure distinct from previously reported Hh signaling inhibitors. Compound 12b suppressed stromal Gli1 mRNA expression in a murine model and demonstrated antitumor activity in a murine medulloblastoma allograft model.  相似文献   

7.
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.  相似文献   

8.
9.
Implications of hedgehog signaling antagonists for cancer therapy   总被引:1,自引:0,他引:1  
The hedgehog (Hh) pathway, initially discovered in Drosophila by two Nobel laureates, Dr. Eric Wieschaus and Dr. Christiane Nusslein-Volhard, is a major regulator for cell differentiation, tissue polarity and cell proliferation. Studies from many laboratories, including ours, reveal activation of this pathway in most basal cell carcinomas and in approximately 30% of extracutaneous human cancers, including medulloblastomas, gastrointestinal, lung, breast and prostate cancers. Thus, it is believed that targeted inhibition of Hh signaling may be effective in treating and preventing many types of human cancers. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. This review discusses the major advances in the current understanding of Hh signaling activation in different types of human cancers, the molecular basis of Hh signaling activation, the major antagonists for Hh signaling inhibition and their potential clinical application in human cancer therapy.  相似文献   

10.
Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.  相似文献   

11.
12.
Hedgehog (Hh) signaling plays a role in heart morphogenesis and can initiate cardiomyogenesis in P19 cells. To determine if Hh signaling is essential for P19 cell cardiomyogenesis, we determined which Hh factors are expressed and the effect of Hh signal transduction inhibitors. Here, we find that the Hh gene family and their downstream mediators are expressed during cardiomyogenesis but an active Hh signaling pathway is not essential. However, loss of Hh signaling resulted in a delay of BMP-4, GATA-4, Gli2, and Meox1 expression during cardiomyogenesis. By using Noggin-overexpressing P19 cells, we determined that Hh signaling was not active during Noggin-mediated inhibition of cardiomyogenesis. Thus, there is cross talk between the Hh and BMP signaling pathways and the Hh pathway appears important for timely cardiomyogenesis.  相似文献   

13.
14.
Members of the Hedgehog (Hh) family of intercellular signaling molecules play crucial roles in animal development. Aberrant regulation of Hh signaling in humans causes developmental defects, and leads to various genetic disorders and cancers. We have characterized a novel regulator of Hh signaling through the analysis of the zebrafish midline mutant iguana (igu). Mutations in igu lead to reduced expression of Hh target genes in the ventral neural tube, similar to the phenotype seen in zebrafish mutants known to affect Hh signaling. Contradictory at first sight, igu mutations lead to expanded Hh target gene expression in somites. Genetic and pharmacological analyses revealed that the expression of Hh target genes in igu mutants requires Gli activator function but does not depend on Smoothened function. Our results show that the ability of Gli proteins to activate Hh target gene expression in response to Hh signals is generally reduced in igu mutants both in the neural tube and in somites. Although this reduced Hh signaling activity leads to a loss of Hh target gene expression in the neural tube, the same low levels of Hh signaling appear to be sufficient to activate Hh target genes throughout somites because of different threshold responses to Hh signals. We also show that Hh target gene expression in igu mutants is resistant to increased protein kinase A activity that normally represses Hh signaling. Together, our data indicate that igu mutations impair both the full activation of Gli proteins in response to Hh signals, and the negative regulation of Hh signaling in tissues more distant from the source of Hh. Positional cloning revealed that the igu locus encodes Dzip1, a novel intracellular protein that contains a single zinc-finger protein-protein interaction domain. Overexpression of Igu/Dzip1 proteins suggested that Igu/Dzip1 functions in a permissive way in the Hh signaling pathway. Taken together, our studies show that Igu/Dzip1 functions as a permissive factor that is required for the proper regulation of Hh target genes in response to Hh signals.  相似文献   

15.
Multiple roles for Hedgehog signaling in zebrafish pituitary development   总被引:1,自引:0,他引:1  
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland.  相似文献   

16.
The Hedgehog (Hh) signaling pathway affects fetal testis growth. Recently, we described the dynamic cellular production of Hh signaling pathway components in juvenile and adult rodent testes. The Hh signaling is understood to regulate cord formation in the fetal testis, but minimal knowledge exists regarding how Hh signaling impacts the postnatal testis. To investigate this, we employed hanging drop cultures, which are used routinely in embryoid body formation. This approach has the advantage of using small media volume, and we examined its suitability for short-term culture of both murine embryonic gonads and adult testis tubules. The effects of cyclopamine, a specific Hh signaling inhibitor, were examined following culture of Embryonic Day 11.5 urogenital ridges (as control) and adult seminiferous tubule fragments for 24-48 h using histological, cell proliferation, and gene expression analyses. Cultured embryonic testes displayed generally normal cord structure, anti-Müllerian hormone (Amh) expression, and cell proliferation; known Hh target gene expression (Gli1, osteopontin, official symbol Spp1, and Amh) was altered in response to cyclopamine. Cultured adult tubules exhibited some loss of seminiferous epithelium organization over 48 h. Spermatogonia continued to proliferate, however, and no significant loss of viability was noted overall. Addition of cyclopamine significantly affected levels of Gli1, Igfbp6, Ccnd2 (cyclin D2), Ccnb1 (cyclin B1), Spp1, Kit, and Amh mRNAs; these genes have been shown previously to be expressed in Sertoli and germ cells. These novel results identify Hh target genes in the testis and demonstrate this signaling pathway likely affects cell survival and differentiation in the context of normal adult testis.  相似文献   

17.
G-protein-coupled receptor kinases (GRKs) play a conserved role in Hedgehog (Hh) signaling. In several systems, GRKs are required for efficient Hh target gene expression. Their principal target appears to be Smoothened (Smo), the intracellular signal-generating component of the pathway and a member of the G-protein-coupled receptor (GPCR) protein family. In Drosophila, a GRK called Gprk2 is needed for internalization and downregulation of activated Smo, consistent with the typical role of these kinases in negatively regulating GPCRs. However, Hh target gene activation is strongly impaired in gprk2 mutant flies, indicating that Gprk2 must also positively regulate Hh signaling at some level. To investigate its function in signaling, we analyzed several different readouts of Hh pathway activity in animals or cells lacking Gprk2. Surprisingly, although target gene expression was impaired, Smo-dependent activation of downstream components of the signaling pathway was increased in the absence of Gprk2. This suggests that Gprk2 does indeed play a role in terminating Smo signaling. However, loss of Gprk2 resulted in a decrease in cellular cAMP concentrations to a level that was limiting for Hh target gene activation. Normal expression of target genes was restored in gprk2 mutants by stimulating cAMP production or activating the cAMP-dependent Protein kinase A (Pka). Our results suggest that direct regulation of Smo by Gprk2 is not absolutely required for Hh target gene expression. Gprk2 is important for normal cAMP regulation, and thus has an indirect effect on the activity of Pka-regulated components of the Hh pathway, including Smo itself.  相似文献   

18.
Hh signaling controls cell proliferation and differentiation in processes that range from insect segmentation and limb formation to vertebrate neural tube development and bone differentiation. Moreover, Hh signaling appears to regulate stem cell homeostasis in adult tissues, while persistent Hh pathway activity has pathological consequences in a number of cancers. Two recent meetings, a Karolinska Institute Nobel conference (August 22-24, 2004) and a joint EMBO and Juan March Institute workshop (October 25-27, 2004), provided the opportunity to take stock of the progress that has been made in understanding Hh signaling and also to remind us of the many questions that still remain unanswered.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号