首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

2.
Transient replication of human papillomavirus DNAs.   总被引:16,自引:9,他引:7       下载免费PDF全文
Information on papillomavirus DNA replication has primarily derived from studies with bovine papillomavirus type 1 (BPV-1). Our knowledge of DNA replication of the human papillomaviruses (HPVs) is quite limited, in part because of the lack of a cell culture system capable of supporting the stable replication of HPV DNA. This study demonstrates that the full-length genomic DNAs of HPV types 11 and 18 (HPV-11 and HPV-18), but not HPV-16, are able to replicate transiently after transfection into several different human squamous cell carcinoma cell lines. This system was used to identify the viral cis and trans elements required for DNA replication. The viral origins of replication were localized to a region of the viral long control region. Like BPV-1, E1 and E2 were the only viral factors required in trans for the replication of plasmids containing the origin. Cotransfection of a plasmid expressing the E1 open reading frame (ORF) from HPV-11 with a plasmid that expresses the E2 ORF from HPV-6, HPV-11, HPV-16, or HPV-18 supported the replication of plasmid DNAs containing the origin regions of HPV-11, HPV-16, or HPV-18, indicating that there are functions shared among the corresponding E1 and E2 proteins and origins of these viruses. Although HPV-16 genomic DNA did not replicate by itself under experimental conditions that supported the replication of HPV-11 and HPV-18 genomic DNAs, expression of the HPV-16 early region functions from a strong heterologous promoter supported the replication of a cotransfected plasmid containing the HPV-16 origin of replication. This finding suggests that the inability of the HPV-16 genomic DNA to replicate transiently in the cell lines tested was most likely due to insufficient expression of the viral E1 and/or E2 genes required for DNA replication.  相似文献   

3.
Human papillomavirus (HPV) infection is necessary but not sufficient for cervical carcinogenesis. Genomic instability caused by HPV allows cells to acquire additional mutations required for malignant transformation. Genomic instability in the form of polyploidy has been demonstrated to play an important role in cervical carcinogenesis. We have recently found that HPV-16 E7 oncogene induces polyploidy in response to DNA damage; however, the mechanism is not known. Here we present evidence demonstrating that HPV-16 E7-expressing cells have an intact G2 checkpoint. Upon DNA damage, HPV-16 E7-expressing cells arrest at the G2 checkpoint and then undergo rereplication, a process of successive rounds of host DNA replication without entering mitosis. Interestingly, the DNA replication initiation factor Cdt1, whose uncontrolled expression induces rereplication in human cancer cells, is upregulated in E7-expressing cells. Moreover, downregulation of Cdt1 impairs the ability of E7 to induce rereplication. These results demonstrate an important role for Cdt1 in HPV E7-induced rereplication and shed light on mechanisms by which HPV induces genomic instability.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Papillomaviral DNA replicates as extrachromosomal plasmids in squamous epithelium. Viral DNA must segregate equitably into daughter cells to persist in dividing basal/parabasal cells. We have previously reported that the viral origin binding protein E2 of human papillomavirus types 11 (HPV-11), 16, and 18 colocalized with the mitotic spindles. In this study, we show the localization of the HPV-11 E2 protein to be dynamic. It colocalized with the mitotic spindles during prophase and metaphase. At anaphase, it began to migrate to the central spindle microtubules, where it remained through telophase and cytokinesis. It was additionally observed in the midbody at cytokinesis. A peptide spanning residues 285 to 308 in the carboxyl-terminal domain of HPV-11 E2 (E2C) is necessary and sufficient to confer localization on the mitotic spindles. This region is conserved in HPV-11, -16, and -18 and bovine papillomavirus type 4 (BPV-4) E2 and is also required for the respective E2C to colocalize with the mitotic spindles. The E2 protein of bovine papillomavirus type 1 is tethered to the mitotic chromosomes via the cellular protein Brd4. However, the HPV-11 E2 protein did not associate with Brd4 during mitosis. Lastly, a chimeric BPV-1 E2C containing the spindle localization domain from HPV-11 E2C gained the ability to localize to the mitotic spindles, whereas the reciprocal chimera lost the ability. We conclude that this region of HPV E2C is critical for localization with the mitotic apparatus, enabling the HPV DNA to sustain persistent infections.  相似文献   

11.
12.
The production of the human papillomavirus type 16 (HPV-16) is intimately tied to the differentiation of the host epithelium that it infects. Infection occurs in the basal layer of the epithelium at a site of wounding, where the virus utilizes the host DNA replication machinery to establish itself as a low-copy-number episome. The productive stage of the HPV-16 life cycle occurs in the postmitotic suprabasal layers of the epithelium, where the virus amplifies its DNA to high copy number, synthesizes the capsid proteins (L1 and L2), encapsidates the HPV-16 genome, and releases virion particles as the upper layer of the epithelium is shed. Papillomaviruses are hypothesized to possess a mechanism to overcome the block in DNA synthesis that occurs in the differentiated epithelial cells, and the HPV-16 E7 oncoprotein has been suggested to play a role in this process. To determine whether E7 plays a role in the HPV-16 life cycle, an E7-deficient HPV-16 genome was created by inserting a translational termination linker (TTL) in the E7 gene of the full HPV-16 genome. This DNA was transfected into an immortalized human foreskin keratinocyte cell line shown previously to support the HPV-16 life cycle, and stable cell lines were obtained that harbored the E7-deficient HPV-16 genome episomally, the state of the genome found in normal infections. By culturing these cells under conditions which promote the differentiation of epithelial cells, we found E7 to be necessary for the productive stage of the HPV-16 life cycle. HPV-16 lacking E7 failed to amplify its DNA and expressed reduced amounts of the capsid protein L1, which is required for virus production. E7 appears to create a favorable environment for HPV-16 DNA synthesis by perturbing the keratinocyte differentiation program and inducing the host DNA replication machinery. These data demonstrate that E7 plays an essential role in the papillomavirus life cycle.  相似文献   

13.
14.
15.
16.
17.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

18.
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.  相似文献   

19.
20.
High-risk human papillomavirus type 16 (HPV-16) and HPV-18 are associated with the majority of human cervical carcinomas, and two viral genes, HPV E6 and E7, are commonly found to be expressed in these cancers. The presence of HPV-16 E7 is sufficient to induce epidermal hyperplasia and epithelial tumors in transgenic mice. In this study, we have performed experiments in transgenic mice to determine which domains of E7 contribute to these in vivo properties. The human keratin 14 promoter was used to direct expression of mutant E7 genes to stratified squamous epithelia in mice. The E7 mutants chosen had either an in-frame deletion in the conserved region 2 (CR2) domain, which is required for binding of the retinoblastoma tumor suppressor protein (pRb) and pRb-like proteins, or an in-frame deletion in the E7 CR1 domain. The CR1 domain contributes to cellular transformation at a level other than pRb binding. Four lines of animals transgenic for an HPV-16 E7 harboring a CR1 deletion and five lines harboring a CR2 deletion were generated and were observed for overt and histological phenotypes. A detailed time course analysis was performed to monitor acute effects of wild-type versus mutant E7 on the epidermis, a site of high-level expression. In the transgenic mice with the wild-type E7 gene, age-dependent expression of HPV-16 E7 correlated with the severity of epidermal hyperplasia. Similar age-dependent patterns of expression of the mutant E7 genes failed to result in any phenotypes. In addition, the transgenic mice with a mutant E7 gene did not develop tumors. These experiments indicate that binding and inactivation of pRb and pRb-like proteins through the CR2 domain of E7 are necessary for induction of epidermal hyperplasia and carcinogenesis in mouse skin and also suggest a role for the CR1 domain in the induction of these phenotypes through as-yet-uncharacterized mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号