首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pectin methylesterase inhibitor cDNA from kiwi fruit   总被引:1,自引:0,他引:1  
We have newly isolated one partial pectin methylesterase inhibitor (PMEI) and two full-length cDNA clones from a kiwi fruit cDNA library. The two full-length cDNA clones, Adpmei-1 and Adpmei-2, had an open reading frame of 185 amino acids, including a predicted signal peptide sequence necessary for localization in the cell-wall space. As the deduced amino acid sequence of the cloned fragment was almost same as the sequence of the previously purified PMEI protein (Camardella et al., Eur J Biochem 267:4561–4565), the clones were considered to be cDNAs encoding PMEI protein. Southern blot analysis indicated a low-copy number of the PMEI genes. Transgenic analysis of asparagus calli expressing a kiwi fruit PMEI gene driven by the CaMV 35S promoter demonstrated in vivo inhibition effects of PMEI on the endogenous pectin methylesterase (PME) activity. The relative expression levels of the PMEI genes in kiwi fruit, analyzed by competitive PCR, increased with the progression of fruit maturation. Given that PME activity also showed its highest level at the fully ripened stage of maturation, the increase in PMEI expression may not indicate direct inhibitory effects on the PME activity and fruit maturation process.  相似文献   

2.
A significant problem in production of fruit juices for human consumption is auto-clarification, where enzyme catalyzes pectin demethylation resulting in loss of the ‘‘natural” cloudy appearance of juices. To overcome this problem, a plant inhibitor protein which blocks the action of pectin methylesterase has been used. In this paper, expression of recombinant kiwi pectin methylesterase inhibitor (PMEI) was carried out in Escherichia coli, and the target protein was expressed in the form of inclusion bodies. The expression level reached 46% of total cell protein. Then the fusion protein was purified by nickel ion metal affinity chromatography, and the purity was finally up to 98%. After refolding in GSH/GSSG redox system, recombinant PMEI not only could efficiently inhibit PMEs from eight different plants, but could remain effective inhibitor activity in the pH 3.0–10.0 and 20–40 °C. Thus, recombinant PMEI has potential application in the production of fruit juices product industry.  相似文献   

3.
Pectin methylesterase (PME; EC 3.1.1.11) activities are widespread in bacteria, fungi, and plants. PME-mediated changes in cell wall pectin structure play important roles in plant development. Genome sequencing projects have revealed the existence of large PME multigene families in higher plants. Additional complexity for PME regulation arises from the presence of specific PME inhibitor proteins (PMEI) in plant cells. Several assay procedures for the determination of PME activity have been reported. However, previous protocols suffered from various limitations. Here we report a protocol for a coupled enzyme assay based on methanol oxidation via alcohol oxidase (AO; EC 1.1.3.13) and subsequent oxidation of formaldehyde by formaldehyde dehydrogenase (FDH; EC 1.2.1.3). This simple and robust assay allows the continuous monitoring of PME activity in the neutral pH range. Furthermore, as plant PMEIs do not interfer with AO and FDH activities, this assay is suitable for the characterization of the inhibition kinetics of PMEI.  相似文献   

4.
5.
Pectin methylesterase and its proteinaceous inhibitor: a review   总被引:1,自引:0,他引:1  
Pectin methylesterase (PME) catalyses the demethoxylation of pectin, a major plant cell wall polysaccharide. Through modification of the number and distribution of methyl-esters on the pectin backbone, PME affects the susceptibility of pectin towards subsequent (non-) enzymatic conversion reactions (e.g., pectin depolymerisation) and gel formation, and, hence, its functionality in both plant cell wall and pectin-containing food products. The enzyme plays a key role in vegetative and reproductive plant development in addition to plant-pathogen interactions. In addition, PME action can impact favourably or deleteriously on the structural quality of plant-derived food products. Consequently, PME and also the proteinaceous PME inhibitor (PMEI) found in several plant species and specifically inhibiting plant PMEs are highly relevant for plant biologists as well as for food technologists and are intensively studied in both fields. This review paper provides a structured, comprehensive overview of the knowledge accumulated over the years with regard to PME and PMEI. Attention is paid to both well-established and novel data concerning (i) their occurrence, polymorphism and physicochemical properties, (ii) primary and three-dimensional protein structures, (iii) catalytic and inhibitory activities, (iv) physiological roles in vivo and (v) relevance of (endogenous and exogenous) enzyme and inhibitor in the (food) industry. Remaining research challenges are indicated.  相似文献   

6.
Abstract Cultures of Sclerotinia sclerotiorum grown on different pectin-related polysaccharides (citrus pectin, apple pectin, sodium polygalacturonate), carboxymethylcellulose (CMC) or glucose as the only carbon source were examined daily for polygalacturonase and pectinase activities. Electrophoretic forms of polygalacturonase and pectin methylesterase activities were revealed using analytical IEF and sodium polygalacturonate and citrus pectin as substrates in overlay gels. A sequence in the production of pectic enzymes and isoenzyme synthesis was found in pectic-polymer cultures corresponding to the induction of several isoenzymes. Enzyme activities in glucose media were associated with three polygalacturonase and two pectinmethylesterase isoforms which were produced constitutively. Sodium-dodecyl-sulphate polyacrylamide-gel electrophoresis followed by immunoblotting with polyclonal antibodies against an exo-polymethylgalacturonase and an exo-polygalacturonase revealed that these exo-enzymes were secreted from the beginning of cultivation in the different culture media showing characteristics of constitutive enzymes.  相似文献   

7.
Root border cells (RBC) are cells surrounding the root apex. They are functionally different from the apex and are considered to play a role in the protection of the root tip from biotic and abiotic stresses. We investigated RBC viability, formation, and pectin methylesterase (PME) activity of the root caps during RBC development in cowpea (Vigna ungniculata ssp. sesquipedalis) under aeroponic culture. The results showed that the border cells formed almost synchronously with the emergence of the root tip. The number of border cells reached the maximum when roots were approximately 15 mm long. Pectin methylesterase (PME) activity of the root cap peaked at a root length of 1 mm. Root border cells separated from the root cap died within 24 h under Al3+ stress while those still attached to the root cap maintained 85% viability at 48 h after treatment. The PME activity did not differ significantly under different Al3+ treatments.  相似文献   

8.
The pectin matrix of the cell wall, a complex and dynamic network, impacts on cell growth, cell shape and signaling processes. A hallmark of pectin structure is the methylesterification status of its major component, homogalacturonan (HGA), which affects the biophysical properties and enzymatic turnover of pectin. The pectin methylesterases (PMEs), responsible for de-esterification, encompass a protein family of more than 60 isoforms in the Arabidopsis genome. The pivotal role of PME in the regulation of pectin properties also requires tight control at the post-translational level. Type-I PMEs are characterized by an N-terminal pro region, which exhibits homology with pectin methylesterase inhibitors (PMEIs). Here, we demonstrate that the proteolytic removal of the N-terminal pro region depends on conserved basic tetrad motifs, occurs in the early secretory pathway, and is required for the subsequent export of the PME core domain to the cell wall. In addition, we demonstrate the involvement of AtS1P, a subtilisin-like protease, in Arabidopsis PME processing. Our results indicate that the pro region operates as an effective retention mechanism, keeping unprocessed PME in the Golgi apparatus. Consequently, pro-protein processing could constitute a post-translational mechanism regulating PME activity.  相似文献   

9.
The molecular model of Lycopersicon esculentum (tomato) pectin methylesterase (PME) was built by using the X-ray crystal structure of PME from the phytopathogenic bacterium Erwinia chrysanthemi as a template. The overall structure and the position of catalytically important residues (Asp132, Asp 153, and Arg 221, located at the bottom of the active site cleft) are conserved. Instead, loop regions forming the walls of the catalytic site are much shorter and form a less deep cleft, as already revealed by the carrot PME crystal structure. The protein inhibitor of pectin methylesterase (PMEI) isolated from kiwi fruit binds tomato PME with high affinity. Conversely, no complex formation between the inhibitor and PME from E. chrysanthemi is observed, and the activity of this enzyme is unaffected by the presence of the inhibitor. Fluorescence quenching experiments on tomato PME and on PME-PMEI complex suggest that tryptophanyl residues present in the active site region are involved in the interaction and that the inhibitor interacts with plant PME at the level of the active site. We also suggest that the more open active site cleft of tomato PME allows the interaction with the inhibitor. Conversely, the narrow and deep cleft of the active site of E. chrysanthemi PME hinders this interaction. The pH-dependent changes in fluorescence emission intensity observed in tomato PME could arise as the result of protonation of an Asp residue with unusually high pKa, thus supporting the hypothesis that Asp132 acts as acid/base in the catalytic cycle.  相似文献   

10.
旨在了解香蕉枯萎病菌(Fusarium oxysporumf.sp.cubense)4号生理小种(FOC4)PME基因序列特征,根据同源物种PME相关序列设计引物,利用PCR和RT-PCR技术,克隆FOC4序列基因和开放阅读框,命名为Foc4Pme。结果表明,所获得的PME基因均含有2个内含子和3个外显子,990 bp的片段,编码329个氨基酸。预测编码蛋白有信号肽,具有1个功能位点,其分子质量和等电点分为34.894 8 kD和9.17,该蛋白为稳定存在的蛋白。该蛋白疏水性最大值为2.022,最小值为-2.156,大部分区域为亲水区。该基因编码的蛋白具有一定保守性,进化上与镰刀菌亲缘关系最近。  相似文献   

11.
12.
High- and low-methoxyl pectins were treated with pectin methylesterase (PME) and the functional properties of the resulting pectin gels were characterized. The degree of esterification of high- and low-methoxyl pectins decreased from 74.5% to 6.3% and 40.0% to 6.5%, respectively while not changing their molecular weight. Also, the addition of glucono-delta-lactone (GDL) dramatically affected the gel strength and the pH reduction by the GDL led to the increased syneresis of the pectin gels, which was also observed in the PME-treated samples. When flavor compounds were incorporated into the pectin gels, the flavor release from the gels increased with decreasing the degree of esterification due to increased hydrophilic properties.  相似文献   

13.
Pectin methylesterases (PMEs) catalyse the removal of methyl esters from the homogalacturonan (HG) backbone domain of pectin, a ubiquitous polysaccharide in plant cell walls. The degree of methyl esterification (DE) impacts upon the functional properties of HG within cell walls and plants produce numerous PMEs that act upon HG in muro. Many microbial plant pathogens also produce PMEs, the activity of which renders HG more susceptible to cleavage by pectin lyase and polygalacturonase enzymes and hence aids cell wall degradation. We have developed a novel microarray‐based approach to investigate the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime pectin substrate and, after digestion the enzyme/substrate mixtures were printed as microarrays. The loss of activity that resulted from certain mutations was detected by probing arrays with a mAb (JIM7) that preferentially binds to HG with a relatively high DE. Active PMEs therefore resulted in diminished JIM7 binding to the lime pectin substrate, whereas inactive PMEs did not. Our findings demonstrate the feasibility of our approach for rapidly testing the effects on PME activity of substituting a wide variety of amino acids at different positions.  相似文献   

14.
A cell wall-bound proteinous factor which causes the gelation of apple pectin solution was examined as to whether it is identical with pectin methylesterase or not. Gel filtration and chromatographic analyses with columns of isolated cell walls and CM Sephadex strongly suggested their identity. The factor caused demethylation of the pectin.  相似文献   

15.
Plant protein inhibitors of invertases   总被引:12,自引:0,他引:12  
  相似文献   

16.
细胞壁是一种复杂的动态网络结构,在植物生长发育、胁迫应答和免疫抗性过程中起着重要的调控和防御作用。果胶(pectin)是细胞初生壁结构中多糖的主要成分之一;其中,同型半乳糖醛酸聚糖(HG)是果胶多糖组分中含量最丰富的线性聚合物。HG的甲基酯化程度变化会导致其酶解形成凝胶,从而影响果胶结构的稳定性。果胶甲酯酶抑制蛋白(PMEIs)通过翻译后机制调控果胶甲酯酶(PMEs)活性,微调果胶多糖甲酯化修饰平衡后,维持细胞壁的完整性和生物力学特性。研究发现,PMEI-PME互作调控果胶甲酯化修饰的稳态是决定细胞黏附、细胞壁硬度和弹性以及器官形态发生的关键因素,同时也是细胞壁应对逆境、释放抗性信号和免疫防御的分子模式。主要对PMEIs在调节植物器官发育过程和应对不同胁迫因子发挥的抗逆功能及调控机制等最新研究进展作出综述。鉴于PMEIs在木本植物中的体内生理活性和调控机制仍有待探索,可为后续填补该领域的研究空白提供理论依据和策略参考。  相似文献   

17.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

18.
Most structures of neutral lipases and esterases have been found to adopt the common alpha/beta hydrolase fold and contain a catalytic Ser-His-Asp triad. Some variation occurs in both the overall protein fold and in the location of the catalytic triad, and in some enzymes the role of the aspartate residue is replaced by a main-chain carbonyl oxygen atom. Here, we report the crystal structure of pectin methylesterase that has neither the common alpha/beta hydrolase fold nor the common catalytic triad. The structure of the Erwinia chrysanthemi enzyme was solved by multiple isomorphous replacement and refined at 2.4 A to a conventional crystallographic R-factor of 17.9 % (R(free) 21.1 %). This is the first structure of a pectin methylesterase and reveals the enzyme to comprise a right-handed parallel beta-helix as seen in the pectinolytic enzymes pectate lyase, pectin lyase, polygalacturonase and rhamnogalacturonase, and unlike the alpha/beta hydrolase fold of rhamnogalacturonan acetylesterase with which it shares esterase activity. Pectin methylesterase has no significant sequence similarity with any protein of known structure. Sequence conservation among the pectin methylesterases has been mapped onto the structure and reveals that the active site comprises two aspartate residues and an arginine residue. These proposed catalytic residues, located on the solvent-accessible surface of the parallel beta-helix and in a cleft formed by external loops, are at a location similar to that of the active site and substrate-binding cleft of pectate lyase. The structure of pectin methylesterase is an example of a new family of esterases.  相似文献   

19.
The secretion of extracellular pectinases, among which there are least six isoenzymes of pectate lyase and one pectin methylesterase, allows the phytopathogenic bacterium Erwinia chrysanthemi to degrade pectin. A gene coding for a novel pectin methylesterase has been cloned from an E. chrysanthemi strain 3937 gene library. This gene, pemB , codes for a 433-amino-acid protein. The PemB N-terminal region has the characteristics of lipoprotein signal sequences. We have shown that the PemB precursor is processed and that palmitate is incorporated into the mature protein. The PemB lipoprotein is not released into the extracellular medium and is localized in the outer membrane. The PemB sequence presents homology with other pectin methylesterases from bacterial and plant origin. pemB -like proteins were detected in four other E. chrysanthemi strains but not in Erwinia carotovora strains. PemB was overproduced in Escherichia coli and purified to homogeneity. PemB activity is strongly increased by non-ionic detergents. The enzyme is more active on methylated oligogalacturonides than on pectin, and it is necessary for the growth of the bacteria on oligomeric substrates. PemB is more probably involved in the degradation of methylated oligogalacturonides present in the periplasm of the bacteria, rather than in a direct action on extracellular pectin. pemB expression is inducible in the presence of pectin and is controlled by the negative regulator KdgR.  相似文献   

20.
Enzymatic processes are emerging as important green biotechnological processes in textile industry. The application of recombinant pectin methylesterase (CtPME) and pectate lyase (CtPL1B) from Clostridium thermocellum for enzymatic degumming of jute or bioscouring of cotton was evaluated. The effectiveness of processes by combination of two enzymes were evaluated that effective degumming of jute and bioscouring of cotton as compared with individual enzyme. The optimum concentrations of two enzymes mixture for both processes, degumming of jute and bio scouring of cotton were 5 mg/mL (2.1 U/mL) of CtPME and 5 mg/mL (3.0 U/mL) of CtPL1B under optimized conditions of 60 min, 100 rpm and 50 °C. FESEM images showed more effective removal of pectin from jute fiber and cotton fabric by enzyme mixture, nevertheless similar to NaOH treatment. Wettability analysis showed mixture of enzymes and NaOH treated cotton fabric absorbed a water drop in 10 s and 8 s, respectively. UTM analysis showed higher tensile strength and Young’s modulus for jute fiber and cotton fabric treated with enzyme mixture than untreated and were similar to those of NaOH treated. These results showed that the CtPME and CtPL1B mixture can be used for replacing the chemical process by green bioprocess in textile industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号