首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some factors affecting the fluorescence of bacteria stained with acridine orange and the direct epifluorescent filter technique (DEFT) were studied. When bacterial cells from a chemostat operated at dilution rates between 0.1 and 0.7/h were used the differential fluorescence observed in the DEFT related to cell 'activity' and the orange fluorescence, which was predominant at high growth rates, may be related to an increase in the RNA content of the cells. Heat affected the colour of cell fluorescence and this was dependent on the cell type and, in particular, age. Uptake of acridine orange into the cells was also found to be an important factor determining the colour of fluorescence. However, with heat-treated cells there was no correlation between the amount of uptake and colour of fluorescence. The relative amounts and degree of denaturation of the different types of nucleic acids remaining in the cells after heat treatment appeared primarily to determine the colour of fluorescence.  相似文献   

2.
The ability of the direct epifluorescent filter technique (DEFT) to enumerate the viable numbers of various species of yeasts was evaluated. A DEFT count could be made in less than 10 min and the DEFT counts of non-heat-treated samples agreed well with plate counts. The DEFT was unsuitable for the enumeration of yeasts in heat-treated samples because non-viable cells fluoresced orange. A double staining technique using Janus Green B and acridine orange was developed to overcome this problem. The modified DEFT enabled viable and non-viable yeasts to be differentiated in heat-treated samples of pure cultures and improved the relationship between the DEFT count and plate count. The method proved to be of little value, however, for use with beverage products because of unreliable staining patterns.  相似文献   

3.
The ability of the direct epifluorescent filter technique (DEFT) to enumerate the viable numbers of various species of yeasts was evaluated. A DEFT count could be made in less than 10 min and the DEFT counts of non-heat-treated samples agreed well with plate counts. The DEFT was unsuitable for the enumeration of yeasts in heat-treated samples because non-viable cells fluoresced orange. A double staining technique using Janus Green B and acridine orange was developed to overcome this problem. The modified DEFT enabled viable and non-viable yeasts to be differentiated in heat-treated samples of pure cultures and improved the relationship between the DEFT count and plate count. The method proved to be of little value, however, for use with beverage products because of unreliable staining patterns.  相似文献   

4.
With the direct epifluorescent filter technique (DEFT), differentiation of bacteria was achieved by a modified Gram-staining procedure using acridine orange as the counterstain. The method enumerated viable Gram-negative and all Gram-positive bacteria. Counts of clumps of orange fluorescent cells (Gram-negative DEFT count) correlated well with colony counts of Gram-negative bacteria in samples of raw milk (r = 0.94). The use of stainless steel membrane filter supports and the addition of citrate-NaOH buffer (0.1 M, pH 3.0) during filtration enabled 10 ml samples of milk to be filtered, thereby increasing the sensitivity of the DEFT five-fold. The relationship between colony and DEFT counts with 10 ml samples was better (r = 0.90) than that using standard 2 ml samples (r = 0.88). Alternatively, these modifications in procedure allowed the preincubation time for 2 ml milk samples to be reduced from 10 to 2 min. Sonication was successful in dispersing bacterial clumps in both pure cultures and in raw milk samples to yield a bacterial count by DEFT which should give a better indication of the hygienic status and keeping quality of a product, than counts of colony forming units.  相似文献   

5.
With the direct epifluorescent filter technique (DEFT), differentiation of bacteria was achieved by a modified Gram-staining procedure using acridine orange as the counterstain. The method enumerated viable Gram-negative and all Gram-positive bacteria. Counts of clumps of orange fluorescent cells (Gram-negative DEFT count) correlated well with colony counts of Gram-negative bacteria in samples of raw milk ( r = 0·94). The use of stainless steel membrane filter supports and the addition of citrate-NaOH buffer (0·1 M, pH 3·0) during filtration enabled 10 ml samples of milk to be filtered, thereby increasing the sensitivity of the DEFT five-fold. The relationship between colony and DEFT counts with 10 ml samples was better ( r = 0·90) than that using standard 2 ml samples ( r = 0·88). Alternatively, these modifications in procedure allowed the preincubation time for 2 ml milk samples to be reduced from 10 to 2 min. Sonication was successful in dispersing bacterial clumps in both pure cultures and in raw milk samples to yield a bacterial count by DEFT which should give a better indication of the hygienic status and keeping quality of a product, than counts of colony forming units.  相似文献   

6.
7.
Secretory processes via exocytosis in rat peritoneal mast cells were visualized by two complementary fluorescence techniques; one staining pre-exocytotic granules with a basic probe and the other staining post-exocytotic granules with acidic probes. Granules within mast cells were selectively stained with acridine orange and emitted orange yellow fluorescence. Upon stimulation with compound 48/80, release of acridine orange from granules was observed both in population and single cell measurements. This release was seen in some localized area of mast cells. Opening of pores between plasma membranes and granule membranes was monitored using acidic fluorescence probes such as 6-carboxyfluorescein or lucifer yellow CH. Not only granules located at peripheral region, but also granules near the core region participated in exocytosis. The existence of junctions between these granules was suggested. TMA-DPH, a lipophilic membrane probe, which was localized at plasma membrane before stimulation, diffused into granule membranes after stimulation. This shows that after stimulation, some constituents of plasma and granule membranes were mixed. Even after extensive degranulation, mast cells extruded acidic probes, indicating the plasma membranes still play a role of barrier. Activation of lateral motion of granules preceding to exocytosis was not observed. It was concluded that the visualization of secretory processes by fluorescence and image processing techniques will be useful for the study of molecular mechanisms underlying exocytosis.  相似文献   

8.
Abstract The in vivo capacity for endo-lysosomal acidification has been monitored in Dictyostelium discoideum amoebae with acridine orange, a fluorescent weak base dye commonly used to probe transmembrane pH gradients. In the presence of aerobic amoebae, the initial rate of fluorescence quenching was found to be proportional to cell density between 5 × 105 and 2.5 × 106 cells ml−1 and independent of acridine orange concentration in the 1.5 to 7.5 μM range. The dye response was sensitive to agents that perturb endo-lysosomal acidification such as NaN3, nigericin or imidazole. Several mutant cell lines whose growth was resistant to methylene diphosphonate were found to be partially deficient in the acridine orange quenching test, suggesting that endo-lysosomal acidification was altered in these mutants.  相似文献   

9.
L D Love 《Histochemistry》1979,62(2):221-225
Freshly harvested rat peritoneal mast cells were stained with different concentrations of acridine orange, a metachromatic fluorochrome known to form complexes with chromatin and muscopolysaccharides. Fluorescence metachromasia was observed in cytoplasmic granules in cell populations with intracelluar dye contents as low as 5 X 10(-16) mole per cell, one-half decade lower than required to produce metachromatic staining of the nucleus. Cytoplasmic granules did not stain uniformly throughout the cell; some granules exhibited red fluorescence and others green. As the amount of acridine orange uptake per cell was increased, cytoplasmic fluorescence became uniformly red and nuclear fluorescence gradually changed from green to yellow.  相似文献   

10.
Summary Freshly harvested rat peritoneal mast cells were stained with different concentrations of acridine orange, a metachromatic fluorochrome known to form complexes with chromatin and mucopolysaccharides. Fluorescence metachromasia was observed in cytoplasmic granules in cell populations with intracellular dye contents as low as 5×10–16 mole per cell, one-half decade lower than required to produce metachromatic staining of the nucleus. Cytoplasmic granules did not stain uniformly throughout the cell; some granules exhibited red fluorescence and others green. As the amount of acridine orange uptake per cell was increased, cytoplasmic fluorescence became uniformly red and nuclear fluorescence gradually changed from green to yellow.  相似文献   

11.
The properties of DNA in situ as reflected by its staining with acridine orange are different in quiescent nonstimulated lymphocytes as compared with interphase lymphocytes that have entered the cell cycle after stimulation by mitogens. The difference is seen after cell treatment with buffers at pH 1.5 (1.3-1.9 range) followed by staining with acridine orange at pH 2.6 (2.3-2.9). Under these conditions the red metachromatic fluorescence of the acridine orange-DNA complex is higher in quiescent cells than in the cycling lymphocytes while the orthochromatic green fluorescence is higher in the cycling, interphase cells. The results suggest that DNA in condensed chromatin of quiescent lymphocytes (as in metaphase chromosomes) is more sensitive to acid-denaturation than DNA in dispersed chromatin of the cycling interphase cells. The phenomenon is used for flow cytometric differentiation between G0 and G1 cells and between G2 and M cells. In contrast to normal lymphocytes the method applied to neoplastic cells indicates the presence of cell subpopulations with condensed chromatin but with DNA content characteristic not only of G1 but also of S and G2 cells. The possibility that these cells represent quiescent (resting) subpopulations, arrested in G1, S and/or G2, is discussed.  相似文献   

12.
DNA-staining of hamster testis cell suspensions followed by flow cytometry demonstrated appearance of the first haploid cells at 23 days post partum (dpp) and of condensed chromatin (in elongated spermatids and spermatozoa) at 33-34 dpp. Mature spermatozoa were first observed in the caput epididymis at 36-37 dpp, thus completing the first spermatogenic wave. Testicular cell suspensions from animals from 23 to 38 dpp were stained with acridine orange, and flow cytometer gating was adjusted to include only the haploid cells. Acridine orange intercalated into double-stranded DNA to produce green fluorescence. The decrease in green fluorescence intensity from 23 until 37 dpp was caused by changes in the binding of DNA to basic proteins in such a fashion as to impede the access of the dye to the DNA double helix. When the green fluorescence values (of the most advanced spermatids) were plotted against the age of the hamsters (in dpp) or the corresponding steps of spermiogenesis, the decrease in fluorescence could be seen to occur in three phases. The inflection point between the first and second phases was observed at about spermiogenesis step 7, consistent with the hypothesis that this represents removal of histone from the chromatin. The second phase presumably represents the period in which transition proteins are bound to the DNA. At approximately steps 15 or 16 a further inflection point was seen where protamines replaced the transition proteins. The red fluorescence produced when acridine orange bound to RNA in spermatids, increased early in spermiogenesis and decreased dramatically at 34 dpp, consistent with the fact that elongating spermatids discard the bulk of their cytoplasm during the maturation process.  相似文献   

13.
In highly humic water, acridine orange precipitated with dissolved humic matter, resulting in such bright background fluorescence that no bacteria could be seen. With bisbenzimide staining, a similar precipitate was nonfluorescent but obscured many cells. An acriflavine staining method proved useful and reproducible both in clear and in humic waters. Fading of fluorescence was not a problem, and stained samples could be stored after preparation. The fluorescence of cells stained with acriflavine was weaker than that with acridine orange, making counting extremely small cells slightly more difficult with the former stain.  相似文献   

14.
Halos were detected with epifluorescence microscopy around penetration sites of Colletotrichum dematium f. circinans and Botrytis allii in onion epidermal cell walls as areas of less intense fluorescence or negatively stained areas in fluorescing cell walls following treatments with berberin sulphate and acridine orange but not with brilliant sulphaflavine (which stained the cell wall), ninhydrin, dansylchloride, or analine blue. Since pectin, pectic acid, avacil (microcrystaline cellulose super fine), filter paper, and Sephadex G-100–120 fluoresced with acridine orange and berberin sulphate, it was inferred that the halos were negatively stained or appeared as areas with less intense fluorescence because enzymes from these pathogens degraded cell wall pectin and cellulose at the point of penetration. Spores of both pathogens fluoresced when stained with brilliant sulphaflavine, acridine orange, ninhydrin, and dansylchloride. These stains and berberin sulphate caused germ tubes, appressoria, and primary infection mycelia to fluoresce. Nuclei in these fungal structures fluoresced when stained with acridine orange and brilliant sulphaflavine.  相似文献   

15.
H M Shapiro 《Cytometry》1981,2(3):143-150
The addition of RNA content estimation to flow cytometric measurement of DNA content provides valuable information concerning cells' transitions between quiescent and proliferative states. Equilibrium staining methods employing acridine orange have been used for DNA/RNA content measurement but are difficult to apply to intact cells and impractical for use in conjunction with fluorescent antibodies or ligands for demonstration of cell surface structures. I have used a combination of Hoechst 33342 (HO342) and pyronin Y (PY) to stain intact cells for DNA/RNA content estimation with a dual source flow cytometer using UV and blue-green or green excitation, measuring HO342 fluorescence at 430--470 nm and PY fluorescence at 590--650 nm. Results obtained with cultured cells and stimulated lymphocytes are in good agreement with those obtained using acridine orange for DNA/RNA staining; about half of the PY fluorescence can be removed from ethanol-fixed cells stained with HO342 and PY by RNAse digestion. The HO342/PY method can be combined with fluorescein immunofluorescence for detection of cell surface markers. HO342 can be combined with other tricyclic heteroaromatic dyes for DNA/RNA estimation; the combination of HO342 and oxazine 1 can be excited in a dual source instrument using a mercury arc lamp and a helium-neon laser. The staining procedure is simple; cells in medium are incubated with 5 microM HO342 at 37 degrees C for 45 min, 5 microM PY (or oxazine 1) is then added and cells are analyzed without washing after an additional 45 min incubation. Suitability of these dye combinations for vital cell staining and sorting remains to be determined.  相似文献   

16.
The absorption and fluorescence spectra of two samples of dye labeled euchrysine were found to differ. One sample, labeled GGNX, had absorption and fluorescence maxima of 435 and 515 nanometers (nm) respectively. The other sample was not further labeled, but had absorption and fluorescence maxima of 492 and 535 nm. The latter values, as well as the shape of both the fluorescence and absorption curves of the second sample were superimposable on a recrystallized sample of acridine orange labeled correctly C. I. 46905. Euchrysine has two free amino groups which are fully methylated in acridine orange, therefore a nitrous acid test can differentiate the two dyes. The sample of euchrysine labeled GGNX gave a reaction, as did acridine yellow, C. I. 46025, but acridine orange, C. I. 46005, did not. Fluorescence metachromasy of euchrysine is less efficient than that of acridine orange in two ways: the shift in the spectrum is smaller by about 40 nm, making the separation of the colors more difficult both visually and by instruments and the metachromatic fluorescence has less than half of the intensity of acridine orange as measured at the peak for each dye. Confusion between these two dyes has occurred because suppliers have used the names interchangeably. For critical studies, the dye used should be identified by its Colour Index number.  相似文献   

17.
The changes of the vitality of Armillaria mellea of infecting corm of Gastrodia elata were observed by appling the live body staining method of acridine orange and by means of fluorescence microscopy. The green fluorescence of vitality was emitted by the first infected hyphae, the yellow one by the decrepit hyphae; but the orange to red fluorescence with the lost vitality were emitted by the fragmentary hyphae and clump form bodies. The large cells containing rich, RNA and protein had been confirmed by the method of the induced fluorescence which the acridine orange and by the method at pH 2.2 which the fast-green staining. The acid-phosphatase was mainly distributed within the cortical cells filled with the infected hyphae. There were few such deposits in the socalled large cells except their walls. The activity of the esterase was shown in the cortical cells filled with the infected hyphae. It were also shown in the clump form bodies and the collapsed nuclei of the large cells. The activities of adenosine triphosphatase (ATPase), peroxidase and polyphenol oxidase was notably shown in the cortical cells filled with the infected hyphae and the large cells.  相似文献   

18.
We investigated a number of sample-preparative parameters for use of flow cytometry to detect chromatin condensation in cells stained with acridine orange after DNA in situ is partially denatured by acid treatment. Stability and data reproducibility for both control and drug-treated ME-180 and HT-29 cells were assessed over: a range of cell concentrations in 2.56 X 10(-5) M acridine orange; 15 days of storage in fixative; various times between RNase digestion and staining; and increasing times between staining and analysis. Listmode data for red and green fluorescence were collected and mean fluorescence intensities of G1, S, and G2 subpopulations of HT-29 and ME-180 cells were computed. These were normalized to data from HeLa-S3 cells and fluorescent microspheres to control for inter-experiment variations in staining and instrumental parameters, respectively. The normalized red and green fluorescence data were used to calculate alpha 1 for G1 cells [alpha t = red fluorescence/(total fluorescence)]. Exponentially growing HeLa-S3 cells were a very consistent and reproducible biological standard to control for fixation and staining variability. Mean fluorescence intensities of control and difluoromethylornithine-treated (i.e., polyamine depleted) cells remained stable and reproducible across all tested ranges for cell concentration, storage in fixative, and time after RNase digestion. This technique can thus be used to evaluate difluoromethylornithine-induced changes in chromatin condensation of samples stored for as long as 2 weeks and analyzed all on 1 day.  相似文献   

19.
Circulating hemocytes of the silkworm can be classified by fluorescence microscopy following staining with acridine orange and propidium iodide. Based on their fluorescence characteristics, three groups of circulating hemocytes can be distinguished. The first group, granulocytes and spherulocytes, is positive for acridine orange and contain bright green fluorescent granules when observed by fluorescence microscopy. In granulocytes, these green granules are heterogeneous and relatively small. In contrast, in spherulocytes, the green granules appear more homogenous and larger. The second group of hemocytes consists of prohemocytes and plasmatocytes. These cells appear faint green following staining with acridine orange and do not contain any green fluorescent granules in the cytoplasm. Prohemocytes are round, and their nuclei are dark and clear within a background of faint green fluorescence. Inside the nucleus there are one or two small bright green fluorescent bodies. Plasmatocytes are irregularly shaped and their nuclei are invisible. Oenocytoids belong to the third group, and their nuclei are positive for propidium iodide. Therefore, all five types of circulating hemocytes of the silkworm, including many peculiar ones that are difficult to identify by light microscopy, can now be easily classified by fluorescence microscopy following staining with acridine orange and propidium iodide. In addition, we show that hemocytes positive for acridine orange and propidium iodide are in fact living cells based on assays for hemocyte composition, phagocytosis, and mitochondrial enzyme activity.  相似文献   

20.
A method was evaluated which has the potential to detect a food sample which has been irradiated. The technique will give an indication of the total number of viable micro-organisms present before irradiation. It is based on the comparison of an aerobic plate count (APC) with a count obtained using the Direct Epifluorescent Filter Technique (DEFT). When the APC of an irradiated sample was compared with the DEFT count on the same sample, the APC was considerably lower than that obtained by DEFT. The count of orange fluorescing cells after irradiation, however, correlated well with an APC of the same sample before irradiation. For the samples examined the DEFT count determined the viable microbial population in the sample before irradiation. The difference between the APC and the DEFT count gave the number of organisms rendered non-viable by the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号