首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Crossing of the pleurovisceral nerve cords in gastropods has supported the view that gastropods evolved by 180 degrees rotation between the ventral and dorsal body regions. Indeed, a rotation of this type occurs as a dramatic morphogenetic movement ("ontogenetic torsion") during the development of basal gastropods. According to a long-standing hypothesis, ontogenetic torsion in basal gastropods preserves an ancient developmental aberration that generated the contorted gastropod body plan. It follows from this reasoning that crossing of the pleurovisceral nerve cords during gastropod development should be mechanically coupled to ontogenetic torsion. The predicted mechanical coupling can now be examined because of the discovery of an early differentiating neuron in Haliotis kamtschatkana (Vetigastropoda) that expresses 5-hydroxytryptamine-like immunoreactivity. The neuron appeared to delineate the trajectory of the pleurovisceral nerve cords beginning before ontogenetic torsion. Before torsion, the neuronal soma is embedded in mantle epithelium at the ventral midline and two neurites extend anteriorly toward the apical sensory organ. Contrary to expectation, the two neurites of this cell did not cross-over during ontogenetic torsion because the soma of this mantle neuron shifted in the same direction as the rotating head and foot. Full crossing of the pleurovisceral nerve cords occurred gradually during later development as the mantle cavity deepened and expanded leftward. These results are consistent with a generalization emerging from comparative studies indicating a conserved developmental stage for gastropods in which the mantle cavity is localized to one side, despite a fully "post-torsional" orientation for other body components. Developmental morphology before this stage is much more variable among different gastropod clades.  相似文献   

2.
This investigation examines tubulin labeling associated with the apical ganglion in a variety of planktotrophic and lecithotrophic opisthobranch larvae. Emphasis is on the ampullary neurons, in which ciliary bundles within the ampulla are strongly labeled. The larvae of all but one species have five ampullary neurons and their associated ciliary bundles. The anaspid Phyllaplysia taylori, a species with direct development and an encapsulated veliger stage, has only four ampullary neurons. The cilia-containing ampulla extends to the pretrochal surface via a long, narrow canal that opens to the external environment through a very small pore (0.1 microm diameter). Cilia within the canal were never observed to project beyond the opening of the apical pore. The ampullary canals extend toward and are grouped with the ciliary tuft cells and remain in this location as planktotrophic larvae feed and grow. If, as has been reported, the ciliary tuft is motile, the pores may be continually bathed in fresh seawater. Such an arrangement would increase sensitivity to environmental chemical stimuli if the suggested chemosensory function of these neurons is correct. In general, ciliary bundles of newly hatched veligers are smaller in planktotrophic larvae than in lecithotrophic larvae. In planktotrophic larvae of Melibe leonina, the ciliary bundles increase in length and width as the veligers feed and grow. This may be related to an increase in sensitivity for whatever sensory function these neurons fulfill. An unexpected tubulin-labeled structure, tentatively called the apical nerve, was also found to be associated with the apical ganglion. This putative nerve extends from the region of the visceral organs to a position either within or adjacent to the apical ganglion. One function of the apical nerve might be to convey the stimulus resulting from metamorphic induction to the visceral organs.  相似文献   

3.
F. -S. Chia  R. Koss 《Zoomorphology》1984,104(3):131-139
Summary The cephalic sensory organ in the veliger larva of Rostanga pulchra is situated dorsally between the rhinophores, emerging as a tuft of cilia. This organ is made up of three types of sensory cells, and based on their morphology have been termed ampullary, parampullary and ciliary tuft cells. The cell bodies of the organ originate in the cerebral commissure, and their dendrites pass to the epidermis as three tracts. Dendrites terminate in the epidermis to form a sectorial field. Axons of these cells run into the mass of neurites in the cerebral commissure but no synapses were observed in this area. Morphological evidence suggests that the cephalic sensory organ may function in chemoreception and mechanoreception related to substrate selection at settlement, feeding, or other behaviors.  相似文献   

4.
The Neritimorpha is an ancient clade of gastropods that may have acquired larval planktotrophy independently of the evolution of this developmental mode in other gastropods (caenogastropods and heterobranchs). Neritimorphs are therefore centrally important to questions about larval evolution within the Gastropoda, but there is very little information about developmental morphology through metamorphosis for this group. We used immunolabeling (antibodies binding to acetylated α-tubulin and serotonin) and serial ultrathin sections for transmission electron microscopy to characterize the apical sensory organ in planktotrophic larvae of a marine neritimorph. The apical sensory organ of gastropod larvae is a highly conserved multicellular sensory structure that includes an apical ganglion and often an associated ciliary structure. Surprisingly, the apical ganglion of Nerita melanotragus (Smith, 1884) does not have typical ampullary neurons, a type of sensory neuron consisting of a cilia filled inpocketing that has been described in all other major gastropod groups. N. melanotragus has cilia-filled pockets embedded within the apical ganglion, but these so-called “sensory cups” are cassettes of multiple cells: one supporting cell and up to three multiciliated sensory cells. We suggest that an internalized pocket that is filled with cilia and open to the exterior via a narrow pore may be essential architectural features for whatever sensory cues are detected by ampullary neurons and sensory cups; however, morphogenesis of these features at the cellular level has undergone evolutionary change. We also note a correlation between the number of sensory elements consisting of cilia-filled pockets within the larval apical sensory organ of gastropods and morphological complexity of the velum or length of the trochal ciliary bands.  相似文献   

5.
The apical area of larvae of four primitive pulmonate species was investigated by means of serial ultrathin and light microscope sections. Cephalic sensory organs (CSOs) were found in the larvae of Onchidium cf. branchiferum (Onchidiidae) and Laemodonta octanfracta (Ellobiidae), while no trace of the organ was present in the larvae of Ovatella myosotis (Ellobiidae) or Williamia radiata (Siphonariidae). TEM investigation revealed very similar CSOs in O. cf. branchiferum and L. octanfracta, with characteristic putative sensory cell types: ampullary cells with an internal ampulla containing densely packed cilia, para-ampullary cells with external cilia parallel to the surface, and ciliary tuft cells, bearing short ciliary tufts. The epithelium covering the organ has a thick microvillar border with microvilli laterally bearing a pair of electron-dense accumulations and a glycocalyx with interspersed flat plaque-like elements. While homologues of all major elements of the CSO can be found in other gastropod taxa, for example caenogastropods and opisthobranchs, the homology of the ampullary cell with similar cells in nongastropods appears unlikely. The CSO of L. octanfracta is associated with an additional structure, an epithelial external protrusion, lying ventral to the CSO. The absence of the organ in W. radiata weakens hypotheses on the organ's function of examining settlement conditions and velar control.  相似文献   

6.
Five malleoli extend ventrally from the proximal segments of each hind leg of mature and immature solpugids. Each malleolus contains the dendrites of 72,000 bipolar sensory neurons with somata in a ganglion in the leg just dorsal to the malleolus. The dendrites terminate in a sensory groove which extends along the ventral edge of the sense organ. The sensory groove has a slit-like opening to the outside, suggesting that these sense organs are chemoreceptors. The malleoli also contain long processes from microvillar cells with somata in the sensory ganglion. The microvillar cell processes extend into the malleolus to the ciliary ending of the dendrites where each process has an enlarged microvillar ending which surrounds the outer segments of 15 to 22 dendrites and releases a sense secretion.  相似文献   

7.
8.
Divergent patterns of neural development in larval echinoids and asteroids   总被引:2,自引:0,他引:2  
The development and organization of the nervous systems of echinoderm larvae are incompletely described. We describe the development and organization of the larval nervous systems of Strongylocentrotus purpuratus and Asterina pectinifera using a novel antibody, 1E11, that appears to be neuron specific. In the early pluteus, the antibody reveals all known neural structures: apical ganglion, oral ganglia, lateral ganglia, and an array of neurons and neurites in the ciliary band, the esophagus, and the intestine. The antibody also reveals several novel features, such as neurites that extend to the posterior end of the larva and additional neurons in the apical ganglion. Similarly, in asteroid larvae the antibody binds to all known neural structures and identifies novel features, including large numbers of neurons in the ciliary bands, a network of neurites under the oral epidermis, cell bodies in the esophagus, and a network of neurites in the intestine. The 1E11 antigen is expressed during gastrulation and can be used to trace the ontogenies of the nervous systems. In S. purpuratus, a small number of neuroblasts arise in the oral ectoderm in late gastrulae. The cells are adjacent to the presumptive ciliary bands, where they project neurites with growth cone-like endings that interconnect the neurons. In A. pectinifera, a large number of neuroblasts appear scattered throughout the ectoderm of gastrulae. The cells aggregate in the developing ciliary bands and then project neurites under the oral epidermis. Although there are several shared features of the larval nervous systems of echinoids and asteroids, the patterns of development reveal fundamental differences in neural ontogeny.  相似文献   

9.
A mouse monoclonal antibody (JD1) to Hydra attenuata using the peroxidase-antiperoxidase (PAP) method revealed unipolar, bipolar, and multipolar sensory and ganglion cells in the head region of H. littoralis. Neurons isolated from macerated hypostomes and tentacles were classified according to the number of their cytoplasmic processes and the position of the cilium, when present, relative to the perikaryon. PAP-stained sensory cells had an apical ciliary cone, whereas ganglion cells did not. Neurons with cytoplasmic processes longer than 50 microns stained faintly, whereas those with processes shorter than 50 microns in length stained mainly dense brown. Unipolar neurons had an oval, crescent, round, or elliptic perikaryon with a single short axon. The perikaryal shape of bipolar neurons varied from round to tall triangular, short triangular, crescent, oval, or elliptic with two oppositely directed symmetric or asymmetric processes. Asymmetric processes were present in a bipolar sensory cell with a long apical cilium typical of gastrodermal sensory cells. One type of bipolar ganglion cell had a short perikaryal cilium. Another type had neurites longer than 50 microns. We found seven morphological variations of multipolar neurons, including one with an apical knob, two with a short perikaryal cilium, two with cytoplasmic loops near the perikaryon, one with perpendicular processes projecting from the major neurites, and one with a branched process longer than 50 microns opposite a tangled mass of neurites.  相似文献   

10.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

11.
12.
The nervous system of the planula larva of Anthopleura elegantissima consists of an apical organ, one type of endodermal receptor cell, two types of ectodermal receptor cells, central neurons and nerve plexus. Both interneural and neuromuscular synapses are found in the nerve plexus. The apical organ is a collection of about 100 long, columnar cells each bearing a long cilium and a collar of about 10 microvilli. The cilia of the apical organ are twisted together to form an apical tuft. The ciliary rootlets of the apical organ cells are extremely long, reaching to the basal processes of the cells adjacent to the mesoglea. All three types of sensory cells are tall and slender in profile and are identified by the presence of one or more of the following features: microtubules, small vesicles, membrane-bound granules and synapses. The interneurons are bipolar cells with somas restricted to the aboral end, adjacent to the apical organ. All synapses observed are polarized or asymmetrical. A diagram including all the elements of the nervous system is presented and the possible functions of the nervous system are discussed in relation to larval behavior.  相似文献   

13.
The three-dimensional structure of the organ of Bellonci in the marine amphipod Gammarus setosus and the relationship between its sensory cells and concretion are described using light, transmission, and scanning electron microscopy, with chemical treatment for cell lysis, calcium chelation, glycogen staining, and lanthanum labelling. The organ is encapsulated and has three units called fuselli. Each is enclosed by two fusellar cells which generate and release calcium granule strands into the cores of the fusellar concretions, which are united in the center of the organ. The surface of each fusellus is traversed by spiral dendrites entering dorsally and ending ventrally. The spiral dendrites arise from sensory neurons contained in a palm-shaped ganglion in the center of the capsule, beyond which they are twisted like a rope before reaching the concretion. The spiral dendrites are linked in pairs by gap and tight junctions and each gives origin to two pairs of 9+0 sensory cilia 30 μm apart. The ciliary distal segments give rise to long tubules which are in contact with the calcium granule strands. The ciliary proximal segments are expanded by many long mitochondria which interdigitate with the branched striated ciliary rootlets. The concretion is suspended in the capsule cavity by axons originating from four neurons of a remote mechanoreceptor. The structure of the organ suggests that it is a sensory organ involved in the reception and integration of a variety of stimuli.  相似文献   

14.
The apical ganglion (AG) of larval caenogastropods, such as Ilyanassa obsoleta, houses a sensory organ, contains five serotonergic neurons, innervates the muscular and ciliary components of the velum, and sends neurites into a neuropil that lies atop the cerebral commissure. During metamorphosis, the AG is lost. This loss had been postulated to occur through some form of programmed cell death (PCD), but it is possible for cells within the AG to be respecified or to migrate into adjacent ganglia. Evidence from histological sections is supported by results from a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which indicate that cells of the AG degenerate by PCD. PCD occurs after metamorphic induction by serotonin or by inhibition of nitric oxide synthase (NOS) activity. Cellular degeneration and nuclear condensation and loss were observed within 12 h of metamorphic induction by NOS inhibition and occur before loss of the velar lobes, the ciliated tissue used for larval swimming and feeding. Velar disintegration happens more rapidly after metamorphic induction by serotonin than by 7-nitroindazole, a NOS inhibitor. Loss of the AG was complete by 72 h after induction. Spontaneous loss of the AG in older competent larvae may arise from a natural decrease in endogenous NOS activity, giving rise to the tendency of aging larvae to display spontaneous metamorphosis in culture.  相似文献   

15.
During metamorphosis of the moth, Manduca sexta, an identified leg motor neuron, the femoral extensor motor neuron (FeExt MN) undergoes dramatic reorganization. Larval dendrites occupy two distinct regions of neuropil, one in the lateral leg neuropil and a second in dorsomedial neuropil. Adult dendrites occupy a greater volume of lateral leg neuropil but do not extend to the dorsomedial region of the ganglion. The adult dendritic morphology is acquired by extreme dendritic regression followed by extensive dendritic growth. Towards the end of larval life, MN dendrites begin to regress, but the most dramatic loss of dendrites occurs in the 3 days following pupation, such that only a few sparse dendrites are retained in the lateral region of leg neuropil. Extensive dendritic growth occurs over the subsequent days such that the MN acquires an adult-like morphology between 12 and 14 days after pupation. This basic process of dendritic remodeling is not dependent upon the presence of the adult leg, suggesting that neither contact with the new target muscle nor inputs from new leg sensory neurons are necessary for triggering dendritic changes. The final distribution of MN dendrites in the adult, however, is altered when the adult leg is absent, suggesting that cues from the adult leg are involved in directing or shaping the growth of MN dendrites to specific regions of neuropil. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.  相似文献   

17.
Summary With the peroxidase-antiperoxidase immunohistochemical method we ascertained the presence of substance P-like immunoreactivity (SPLI) in fibers and cell bodies of the trigeminal sensory system of the pit viper, Agkistrodon blomhoffi. There are a few SPLI fibers each in the principal sensory nucleus and the main neuropil of the lateral descending nucleus (i.e., the infrared sensory nucleus); a moderate number in the descending nucleus; and a large number in the caudal subnucleus, the medial edges of the interpolar subnucleus, and the marginal neuropil of the lateral descending nucleus. About 30% of the cell bodies in the ophthalmic and maxillo-mandibular ganglia show SPLI, and of the two craniocervical ganglia, the proximal ganglion has many more cells with SPLI than the distal ganglion. The SPLI distribution in the common trigeminal sensory system is similar to that of mammals, and suggests that the function of this system is also similar. In the infrared sensory system, the differing distribution in the main and marginal neuropils suggests separate functions for these two structures in the system.  相似文献   

18.
This paper describes some features of the chaetognath nervous system from ultrastructural observations and observations on material stained with specific techniques for nervous tissue, and from records of the activity of the locomotor muscles and ventral ganglion. Sensory cells grouped on the ventral surface of the head bear ciliary processes (some with multiple tubules), and are probably in connexion with the central nervous system by their own axons, unlike the sensory cells of the hair fan vibration receptors of head and body. The ventral ganglion is motor to the locomotor muscles of the body, and controls the rhythmic locomotor activity of the animal. Electrical events associated with contraction of these muscles are compound non-overshooting spike-like potentials. The ventral ganglion contains several large nerve fibres constant in position and connexions in different individuals. Some of these arise from cells in the ganglia of the head, and pass to the ventral ganglion, others from cells within the ventral ganglion, and probably supply the ciliary hair fan receptors of the body, whilst the motor axons issuing from the ventral ganglion are smaller in diameter. The ganglion is arranged on a ladder-like plan, and axons of the lateral cell bodies cross the central neuropil transversely before they contribute to the longitudinal tracts or pass out in the radial nerves. Synapses in the neuropil contain 30–40 nm electron lucent vesicles; the transmitter is unknown, but is unlikely to be either acetylcholine or l -glutamate. Occasional larger electron dense vesicles up to 70 nm in diameter are also found within nerve fibres of the neuropil. It is concluded that the arrangement of the peripheral nervous system is unlike that of several groups which have been suggested as related to chaetognaths.  相似文献   

19.
Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs) of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb). While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate.  相似文献   

20.
Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger metamorphosis in physiologically competent larvae of this species. Neuropils in the brains of these competent larvae display histochemical reactivity for NADPH diaphorase (NADPHd), an indication of neuronal NOS activity. The intensity of NADPHd staining is greatest in the neuropil of the apical ganglion (AG), a region of the brain that contains the apical sensory organ and that innervates the bilobed ciliated velum, the larval swimming and feeding organ. Once metamorphosis is initiated, the intensity of NADPHd staining in the AG and presumably, concomitant NO production, decline. The AG is finally lost by the end of larval metamorphosis, some 4 days after induction. To determine if the neurons of the AG are a source of larval NO, we conducted immunocytochemical studies on larval Ilyanassa with commercially available antibodies to mammalian neuronal NOS. We localized NOS-like immunoreactivity (NOS-IR) to 3 populations of cells in competent larvae: somata of the AG and putative sensory neurons in the edge of the mantle and foot. Immunocytochemistry on pre-competent larvae demonstrated that numbers of NOS-IR cells in the AG increase throughout the planktonic larval stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号