首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon sexual stimulation, penile erection, occurring in response to the activation of pro-erectile autonomic pathways, is greatly dependent on adequate inflow of blood to the erectile tissue and requires coordinated arterial endothelium-dependent vasodilatation and sinusoidal endothelium-dependent corporal smooth muscle relaxation. Nitric oxide (NO) is the principal peripheral pro-erectile neurotransmitter which is released by both non-adrenergic, non-cholinergic neurons and the sinusoidal endothelium to relax corporal smooth muscle through the cGMP pathway. Any factors modifying the basal corporal tone, the arterial inflow of blood to the corpora, the synthesis/release of neurogenic or endothelial NO are prime suspects for being involved in the pathophysiology of erectile dysfunction (ED). In fact, conditions associated with altered endothelial function, such as ageing, hypertension, hypercholesterolemia and diabetes, may, by changing the balance between contractant and relaxant factors, cause circulatory and structural changes in penile tissues, resulting in arterial insufficiency and defect in smooth muscle relaxation and thus, ED. There is increasing evidence to suggest that ED is predominantly a vascular disease and may even be a marker for occult cardiovascular disease. Recent results illustrating the importance of endothelial dysfunction in the pathophysiology of different forms of experimental ED are discussed. These pathways may represent new potential treatment targets.  相似文献   

2.
For erection to take place, the penile arteries and sinusoids have to dilate, thereby increasing the blood flow into the penis. There is increasing evidence that release of l-arginine derived nitric oxide (NO) from nonadrenergic-noncholinergic (NANC) nerves and from the sinusoidal endothelium is a major event in penile smooth muscle relaxation and promotes the endogenous formation of cyclic guanosine monophosphate (cGMP). Nitrovasodilators can be attributed to the activation of soluble guanylate cyclase, resulting in an increase in intracellular level of cyclic guanosine monophosphate, but prolonged exposure to high levels of nitroglycerine and other organic nitroesters induces tolerance against the cardiovascular effect. In this study, the aim was to determine the effect of diabetes on the corporal smooth muscle relaxant effect of ISDN and the effect of diabetes on the process of tolerance to the drug. For this purpose, alloxan-induced diabetic rabbits were used to form diabetes group. The responses of the corpus cavernous strips obtained from control and alloxan-induced diabetic rabbit were studied in organ chamber. In conclusion, prolonged in vitro exposure of corpus cavernosum strips obtained from control and diabetic groups to high concentrations of ISDN caused significant desensitization to the relaxant effect the drug. So, prolonged exposure of corporal tissue to the agents like nitroglycerine, used for treatment of impotence, may render ineffective the therapy in diabetic erectile impotence. However, intolerance to nitric oxide provides a rationale for the concept of using nitro oxide agents (like SNP) in the treatment of diabetic erectile dysfunction.  相似文献   

3.
Mesenchymal stem cells (MSCs) can be used in adult stem cell-based gene therapy for vascular diseases. To test the hypothesis that MSCs alone or endothelial nitric oxide synthase (eNOS)-modified MSCs can be used for treatment of erectile dysfunction (ED), syngeneic rat MSCs (rMSCs) were isolated, ex vivo expanded, transduced with adenovirus containing eNOS, and injected into the penis of aged rats. Histological analysis demonstrated that rMSCs survived for at least 21 days in corporal tissue after intracavernous injection, and an inflammatory response was not induced. Intracavernous administration of eNOS-modified rMSCs improved the erectile response in aged rats at 7 and 21 days after injection. The increase in erectile function was associated with increased eNOS protein, NOS activity, and cGMP levels. rMSCs alone increased erectile function of aged rats at day 21, but not at day 7, with the transplanted cells exhibiting positive immunostaining for several endothelial and smooth muscle cell markers. This change in rMSC phenotype was accompanied by upregulation of penile eNOS protein expression/activity and elevated cGMP levels. These findings demonstrate that an adenovirus can be used to transduce ex vivo expanded rMSCs to express eNOS and that eNOS-modified rMSCs improve erectile function in the aged rat. Intracavernous injection of unmodified wildtype rMSCs improved erectile function 21 days after injection through mechanisms involving improved endothelium-derived NO/cGMP signaling and rMSC differentiation into penile cells expressing endothelial and smooth muscle markers. These data highlight the potential clinical use of adult stem cell-based therapy for the treatment of ED.  相似文献   

4.
阴茎勃起及勃起功能障碍的研究进展   总被引:15,自引:0,他引:15  
勃起功能障碍的基础研究须近十年来取得了较大进展,一氧化氮-cGMP(NO-cGMP)通路的发现使得阴茎平滑肌松驰的机制进一步阐明。一氧化氮合酶(NOS)、磷酸二酯酶(PDEs)的研究为勃起功能障碍的临床治疗提供了坚实的基础,进而促使了万艾可的问世。目前,勃起功能障碍的基因治疗停留在实验室阶段,但随着分子生物学的深入研究,转基因疗法可能成为临床上治疗勃起功能障碍的有效方法之一。  相似文献   

5.
The localization of vasoactive intestinal polypeptide (VIP) in the male genitourinary tract was investigated in the rabbit and man by means of radioimmunoassay and immunohistochemistry. In addition, the in vitro effect of VIP upon penile smooth muscle from man, the Vervet monkey, and the rabbit was investigated. Significant concentrations of VIP immunoreactivity were found in the human penis and all the organs of the rabbit genital tract apart from the testis. VIP immunoreactive nerve fibres were observed in the erectile tissue of the human and rabbit penis and in the other organs of the rabbit genital tract apart from the testis. Fibres were most abundant in association with blood vessels, in smooth muscle tissue, and subepithelially in glandular tissue. Strips of smooth muscle taken from the corpus cavernosum of Vervet monkey and man showed a dose-dependent relaxation in response to VIP at concentrations of 6 X 10(-8) mol X L-1 and 6 X 10(-7) mol X L-1. The data indicate that VIP may be an inhibitory neurotransmitter involved in the nervous control of penile erection.  相似文献   

6.
Relaxation of the smooth muscle cells in the cavernosal arterioles and sinuses results in increased blood flow into the penis, raising corpus cavernosum pressure to culminate in penile erection. Nitric oxide, released from non-adrenergic/non-cholinergic nerves, is considered the principle stimulator of cavernosal smooth muscle relaxation, however, the inhibition of vasoconstrictors (that is, norepinephrine and endothelin-1, refs. 5-9) cannot be ignored as a potential regulator of penile erection. The calcium-sensitizing rho-A/Rho-kinase pathway may play a synergistic role in cavernosal vasoconstriction to maintain penile flaccidity. Rho-kinase is known to inhibit myosin light chain phosphatase, and to directly phosphorylate myosin light-chain (in solution), altogether resulting in a net increase in activated myosin and the promotion of cellular contraction. Although Rho-kinase protein and mRNA have been detected in cavernosal tissue, the role of Rho-kinase in the regulation of cavernosal tone is unknown. Using pharmacologic antagonism (Y-27632, ref. 13, 18), we examined the role of Rho-kinase in cavernosal tone, based on the hypothesis that antagonism of Rho-kinase results in increased corpus cavernosum pressure, initiating the erectile response independently of nitric oxide. Our finding, that Rho-kinase antagonism stimulates rat penile erection independently of nitric oxide, introduces a potential alternate avenue for the treatment of erectile dysfunction.  相似文献   

7.
J M Polak  S R Bloom 《Peptides》1984,5(2):225-230
VIP is present in the genitourinary system of man and animals. In man the highest concentrations are found in the penis, the uterus and vagina and in the urinary bladder. VIP nerves heavily innervate the erectile tissue of the male external genitalia, the uterine smooth muscle and blood vessels, the seromucous glands of the cervix, and the lamina propria and vaginal epithelium. In the urinary bladder, VIP nerves are located beneath the transitional epithelium, in the lamina propria and in the smooth muscle. Other areas well innervated by VIP nerves include the prostate, seminal vesicles and vasa deferentia. Chemical (phenol- and 6-OHDA) or surgical (hypogastric or pelvic nerve section) extrinsic denervation fail to deplete the genitourinary system of its VIP content, supporting the view that VIP-containing nerves originate from local ganglion cells. Indeed, neuronal cell bodies containing VIP are seen in the paracervical ganglia of the female genitalia, the para- or intramural bladder ganglia and scattered through the base of the cavernosum body, the neck of the bladder and the prostate. The finding of elevated levels of VIP in the local circulation after induced penile erection in man and mammals and the ability of VIP to relax the detrusor muscle of the bladder suggests that the peptide may be involved in penile erection and bladder relaxation, as does the marked VIP depletion in the penis or bladder in patients suffering from diabetic impotence or bladder instability.  相似文献   

8.
Erectile function is critically dependent upon the activation of the endothelial nitric oxide synthase (eNOS) in the smooth muscle cells of penile corpus cavernosum tissue. Nebivolol is a β1-selective β-adrenoceptor blocker (β-ARB) with additional vasodilating properties, which have been attributed to eNOS-activation. Our study investigated whether nebivolol is able to increase eNOS activity in erectile tissue. Murine penile tissue was incubated in an organ bath under control conditions and in the presence of nebivolol or metoprolol. Immunofluorescence staining was performed using specific antibodies against eNOS-activation or eNOS-serine 1177 phosphorylation. Corpus cavernosum smooth muscle tissue was identified using a smooth muscle actin antibody. In addition, slices of murine erectile tissue were incubated with diaminofluorescein (DAF), a specific fluorescence marker for NO-liberation. Under control conditions and after application of metoprolol, we observed a small eNOS-activation and serine 1177-phosphorylation in murine corpus cavernosum tissue. A significant increase in eNOS-activation and serine 1177-phosphorylation of eNOS was observed only in the presence of nebivolol (10 μM). These alterations of the eNOS protein induced after application of nebivolol were associated with a time-dependent increase in DAF fluorescence in murine erectile tissue. We conclude that β-adrenoceptor blockers differentially influence erectile tissue. Since cardiovascular diseases are often associated with the development of erectile dysfunction, the nebivolol-induced eNOS-activation in corpus cavernosum may be beneficial when treating patients suffering from cardiovascular disease.  相似文献   

9.
The role of endothelium-derived nitric oxide (NO) to cause smooth muscle phospholamban (PLB) phosphorylation was studied in the isolated perfused rat aorta precontracted with norepinephrine using a back-phosphorylation technique. NO-induced relaxation was associated with increased PLB-phosphorylation while norepinephrine as such was ineffective. Removal of endothelium significantly reduced PLB-phosphorylation in indomethacin treated vessels. Stimulation of NO-formation by ATP augmented PLB-phosphorylation in intact vessels but was ineffective in denuded aortas. The results indicate that PLB-phosphorylation of vascular smooth muscle plays an important role in mediating NO-dependent relaxation by enhancing Ca(++)-uptake into sarcoplasmic reticulum.  相似文献   

10.
Thirty to eighty-seven percent of patients treated by radical prostatectomy experience erectile dysfunction (ED). The reduced efficacy of treatments in this population makes novel therapeutic approaches to treat ED essential. We propose that abundant apoptosis observed in penile smooth muscle when the cavernous nerve (CN) is cut (mimicking the neural injury which can result from prostatectomy) is a major contributing factor to ED development. We hypothesize that decreased Sonic hedgehog (SHH) signaling is a cause of ED in neurological models of impotence by increasing apoptosis in penile smooth muscle. We examined this hypothesis in a bilateral CN injury model of ED. We found that the active form of SHH protein was significantly decreased 1.2-fold following CN injury, that SHH inhibition causes a 12-fold increase in smooth muscle apoptosis in the penis, and that SHH treatment at the time of CN injury was able to decrease CN injury-induced apoptosis (1-3-fold) in a dose-dependent manner. These results show that SHH stabilizes the alterations of the corpora cavernosal smooth muscle following nerve injury.  相似文献   

11.
Penile erection occurs in response to cavernous smooth muscle relaxation, increased blood flow to the penis, and restriction of venous outflow. These events are regulated by a spinal reflex relying on visual, imaginative, and olfactory stimuli generated within the central nervous system (CNS) and on tactile stimuli to the penis. Drugs can have a facilitatory or inhibitory effect either on the nerves regulating this reflex or on the cavernous smooth muscle. A balance between contractile and relaxant factors governs flaccidity/rigidity within the penis. Drugs that raise cytosolic calcium either prevent or abort erection. Conversely, drugs that lower cytosolic calcium relax smooth muscle and can initiate penile erection. Efficacy in treating erectile dysfunction (ED) with phosphodiesterase inhibitors, especially type 5; alpha-adrenergic-receptor antagonists; and dopamine agonists exploit these mechanisms within the penis or CNS. Recent advances in our understanding of the pharmacology of penile erection are being translated into effective therapies for ED.  相似文献   

12.
Connexins, that have their main function as part of gap junction channels, are proteins expressed in a large number of tissues such as endocrine, nervous, vascular, and muscular tissues. Gap junctions are implicated in tissue homeostasis and control of cell proliferation and differentiation. Interestingly, mutations of connexin genes have been reported in several human diseases (peripheral neuropathies, cardiovascular and dermatological diseases, hereditary cataract, and deafness) and altered expression of connexins have been associated with tumoral progression. Today, several lines of study argue for a critical role of gap junctions in corporal smooth muscle relaxation and erectile response. The present review highlights the emerging role of connexin43, one of these membranous proteins, in the physiology and physiopathology of human erectile function and its possible medical application.  相似文献   

13.
P. Bondil 《Andrologie》1991,1(3):92-95
Until recently, the erectile tissues were considered a simple sponge, passively filled or emptied by an imbalance between arterial and venous flows. In reality, the erectile tissues themselves control eretion by virtue of their powerful smooth musculature. Anatomically and physiologicall the erectile tissues act a muscular sponge that is both independent and deformable. Flaccidity and detumescence are caused by a contraction of these muscles while erection is brought about their relaxation. However, the simple contractility of the erectile bodies is insufficient to fully explain erection. This complex hydraulic phenomenon also requires the involvement of vascular mechanisms (arterial dilation, occlusion of cavernosal drainage) as well as tissue mechanisms (compression by the striated erectile muscles, the specific deformation of each erectile structure) all under endocrine and psychoneurological control. By emphasizing the major role played by tissue mechanisms in erection, this concept of an active sponge hightlights the necessity of investigating the erectile tissues leading to a reevaluation of the pathophysiology and treatment of erectile problems.  相似文献   

14.
Cigarette smoking is an independent risk factor for vasculogenic erectile dysfunction (ED). Nitric oxide (NO) has been demonstrated to be the principal mediator of cavernous smooth muscle relaxation and penile erection. Therefore, we examined whether or not enzyme activities and factors involved in the NO generation pathway are affected in rabbit corpus cavernosum after administration of nicotine- and tar-free cigarette smoke extract (CSE). CSE was prepared by bubbling a stream of cigarette smoke into phosphate-buffered saline. CSE was injected subcutaneously into adult male rabbits once a day for 5 wk. In the CSE group, significantly decreased cyclic GMP production as a marker of NO generation was associated with attenuated overall nitric oxide synthase (NOS) activity, enhanced arginase activity, accumulation of endogenous NOS inhibitors such as monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), and decreased dimethylarginine dimethylaminohydrolase (DDAH) activity as an metabolizing enzyme of endogenous NOS inhibitors. Neuronal NOS (nNOS) and DDAH I protein expression were decreased without altering endothelial NOS expression, while arginase I expression was upregulated. These results suggest that impaired NO production would result from blunted NOS activity, which is possibly brought about by the downregulation of nNOS protein, accumulation of endogenous NOS inhibitors, and enhanced arginase activity together with upregulation of arginase I protein in cavernous tissue. The impaired DDAH activity due to decreased expression of DDAH I protein would result in an accumulation of endogenous NOS inhibitors with CSE. These alterations may be relevant to induction of the erectile dysfunction following CSE.  相似文献   

15.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

16.
Summary The present study investigated the distribution of neuropeptide Y-immunoreactive fibers to the penis of the rat. In the corpora cavernosa penis, a dense plexus of fibers was asociated with arteries, intrinsic cavernosal muscle, and veins including the deep dorsal vein. In the corpus spongiosum, immunoreactive fibers were present around vascular smooth muscle and at the periphery of the acini of the paraurethral glands. Immunohistochemistry of penile neurons identified by retrograde tracer injection into the penis indicates that about 5% of the penile neurons in the pelvic plexus contained the neuropeptide while larger percentages of penile neurons in the sympathetic chains were immunoreactive for neuropeptide Y. Chemical and surgical sympathectomy greatly reduced the neuropeptide Y- and catecholamine-containing fibers in the erectile tissue but had no clear effect on the neuropeptide Y fibers around the paraurethral glands; a tissue that is not innervated by adrenergic fibers. It is concluded that (1) the widespread distribution of neuropeptide Y indicates that it may function in the control of penile blood flow, (2) with the possible exception of the paraurethral glands, the sympathetic chain is the most likely source of neuropeptide Y fibers in both erectile bodies of the penis, and (3) this peptide may play a role in the secretory functions of the paraurethral glands.  相似文献   

17.
Increases inguanosine 3',5'-cyclic monophosphate (cGMP) induced bynitric oxide (NO), nitrovasodilators, and atrial peptides correlatewith relaxation of vascular smooth muscle. Relaxation of myometrialsmooth muscle by increases in cGMP, however, has required unusuallyhigh concentrations of the cyclic nucleotide. We tested the hypothesisthat the sensitivity of myometrium to relaxation by cGMP is increasedduring pregnancy. Aortic smooth muscle was more sensitive to relaxationby cGMP than myometrial tissues, and, contrary to our hypothesis,myometrium from pregnant rats was least sensitive. Although levels ofcGMP were elevated after treatment with the NO donor,S-nitroso-N-acetylpenicillamine, relaxation of myometrial tissues obtained from pregnant rats occurred only at extraordinarily high concentrations. The levels ofcGMP-dependent protein kinase (PKG) were significantly decreased inmyometrium from pregnant rats compared with myometrium from nonpregnantcycling animals or aortic smooth muscle. Administration of estradiol to ovariectomized rats increased myometrial PKG expression, andprogesterone antagonized this response. We conclude that1) myometrial tissues from pregnantrats are not sensitive to relaxation by cGMP and 2) this insensitivity to cGMP isaccompanied by progesterone-mediated decreases in the level of PKGexpression.

  相似文献   

18.
Jiang JK  Chiu JH  Yu IT  Lin JK 《Life sciences》2000,66(24):2323-2335
Rutaecarpine, a compound extracted from the Chinese medicinal herb Evodia rutaecarpa, has been shown to possess relaxing action on vascular smooth muscle from rat thoracic aorta. The internal anal sphincter is a specialized smooth muscle regulating important anorectal physiology. To investigate the effect and underlying mechanisms of rutaecarpine on internal anal sphincter, muscle strips from rabbit internal anal sphincter were used. The results showed that rutaecarpine (1 x 10(-10) M to 1 x 10(-4) M) produced a concentration-dependent muscular relaxation effect in our preparations, which were precontracted with acetylcholine. This muscular relaxation effect was not affected by treatment with L-N(G)-nitro-arginine methyl ester (a nitric oxide synthase inhibitor), methylene blue (a guanylate cyclase inhibitor), N-ethylmaleimide (an adenylate cyclase inhibitor), or by removal of the mucosa and submucosa tissue. Pretreatment with nifedipine (a calcium channel blocker) or extracellular Ca+2 removal by ethylenediaminetetraacetic acid (EDTA) greatly attenuated the relaxation effect, suggesting that calcium ion might be involved. In experiments using strips from human internal anal sphincter, an even more prominent relaxation effect was shown. It is thus concluded that rutaecarpine caused relaxation on internal anal sphincter from rabbits and human subjects. The relaxation action was not related to NO-cGMP pathway, instead calcium ion might play an important role and shed insight into clinical implications for those anorectal disorders with hyperactive anal tone.  相似文献   

19.
As a basis for understanding the mechanism of erection in an animal model frequently used in research in reproductive biology, the angioarchitecture of the penis of the rat has been described using scanning electron microscopy. Study of the penile vasculature of the rat indicates that the corpora cavernosa penis and the corpus spongiosum are independent erectile tissues, each with its own arterial and venous vessels. The large vascular spaces and abundant smooth muscle of the penile crura are compatible with its role in regulating blood flow to more distal penile tissues. Helicine arteries of the crura, but not the parent deep penile artery or arteries elsewhere, have muscular cushions in their walls. The venous drainage of the penile crura is via subtunical veins which are thought to be compressed during erection to elevate pressure within the penis. Large, paired cavernous veins drain the shaft of the penis. A unique method for inhibiting blood flow from the penis is indicated by the division of the cavernous veins into smaller channels prior to joining the subtunical venous plexus. Erectile tissue in the bifid origins of the corpus spongiosum has abundant cavernous muscle, while in the remainder of the corpus spongiosum little smooth muscle lines the cavernous spaces. The cavernous spaces on either side of the urethra coalesce to form vessels, each of which communicates with cavernous spaces in the glans. In addition, a bypass of the glans is effected by communication of these vessels directly with the deep dorsal vein. The apparent absence of muscular pads in vessels of the spongiosum, the relative paucity of cavernous smooth muscle, and the ample venous drainage provided by the deep dorsal vein may account for the lack of a venous occlusive mechanism similar to that of the corpora cavernosa penis.  相似文献   

20.
Both animal and human penile tissue synthesize prostaglandins (PGs). Furthermore, intracavernous injection of certain PGs elicits erection in men with erectile dysfunction (ED). It is also well established that PGs are involved in the pathophysiology of atherosclerosis and diabetes mellitus (DM). Since atherosclerosis and DM are major risk factors for ED, it has been suggested that the disruption of PG synthesis in penile tissues and related vasculature may play a role in the pathogenesis of ED. In this review, we discuss the role of PGs in normal penile erection as well as on the pathophysiology and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号