首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 109 to 11.8 × 109 and 9.0 × 105 to 1.35 × 108 cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.  相似文献   

2.
The molecular diversity of the rumen microbiome was investigated in five semi-domesticated adult female Norwegian reindeer (Rangifer tarandus tarandus) grazing on natural summer pastures on the coast of northern Norway (71.00° N, 25.30° E). Mean population densities (numbers per gram wet weight) of methanogenic archaea, rumen bacteria and ciliate protozoa, estimated using quantitative real-time polymerase chain reaction (PCR), were 3.17 × 109, 5.17 × 1011 and 4.02 × 107, respectively. Molecular diversity of rumen methanogens was revealed using a 16S rRNA gene library (54 clones) constructed using pooled PCR products from the whole rumen contents of the five individual reindeer. Based upon a similarity criterion of <97%, a total of 19 distinct operational taxonomic units (OTUs) were identified, nine of which are potential new species. The 16S rRNA sequences generated from the reindeer rumen exhibited a high degree of sequence similarity to methanogens affiliated with the families Methanobacteriaceae (14 OTUs) and Methanosarcinaceae (one OTU). Four of the OTUs detected belonged to a group of uncultivated archaea previously found in domestic ruminants and thought to be dominant in the rumen together with Methanobrevibacter spp. Denaturing gradient gel electrophoresis profiling of the rumen bacterial 16S rRNA gene and the protozoal 18S rRNA gene indicated a high degree of animal variation, although some bands were common to all individuals. Automated ribosomal intergenic spacer analysis (ARISA) profiling of the ruminal Neocallimastigales population indicated that the reindeer are likely to contain more than one type of anaerobic fungus. The ARISA profile from one animal was distinct from the other four. This is the first molecular investigation of the ruminal methanogenic archaea in reindeer, revealing higher numbers than expected based on methane emission data available. Also, many of the reindeer archaeal 16S rRNA gene sequences were similar to those reported in domesticated ruminants in Australia, Canada, China, New Zealand and Venezuela, supporting previous findings that there seems to be no host type or geographical effect on the methanogenic archaea community structure in ruminants.  相似文献   

3.
A thorough understanding of virus diversity in wildlife provides epidemiological baseline information about pathogens. In this study, eye swab samples were obtained from semi-domesticated reindeer ( Rangifer tarandus tarandus) in Norway during an outbreak of infectious eye disease, possibly a very early stage of infectious keratoconjunctivitis (IKC). Large scale molecular virus screening, based on host nucleic acid depletion, sequence-independent amplification and next-generation sequencing of partially purified viral nucleic acid, revealed the presence of a new papillomavirus in 2 out of 8 eye swab samples and a new betaherpesvirus in 3 out of 8 eye swab samples collected from animals with clinical signs and not in similar samples in 9 animals without clinical signs. Whether either virus was responsible for causing the clinical signs or in any respect was associated to the disease condition remains to be determined.  相似文献   

4.
Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen.  相似文献   

5.
青海两盐湖细菌多样性研究   总被引:12,自引:3,他引:12  
用DGGE法和纯培养法,对青海柯柯盐湖、茶卡盐湖底泥及周边土壤样品的细菌多样性进行了研究。结果显示,两个盐湖存在大量的未知细菌, 分离到的纯培养仅占实有细菌的小部分。采用多相分类方法,鉴定了12株纯培养细菌,属5个可能的新种,另有一株菌可能成立一个新属。认为提出新思路、设计新程序,从自然极端环境取样,分离未知菌,是微生物资源开发利用的关键之一。  相似文献   

6.
Intraspecific phenotypic variation between populations separated by large geographic distances is common. Differences in the mean and variance of traits among populations can be used to infer the relative strength, direction, and type of selection on traits. Patterns in the mean provide information on the type of selection, and patterns in variance provide information on the strength of selection. However, interpretation of mean/variance patterns is difficult when two traits are linked and strongly correlated to fitness because it is unlikely that each trait will reach phenotypic optima. In amphibians time to metamorphosis and size at metamorphosis are positively related both phenotypically and genetically. Using a common-garden experiment we investigated whether selection favours shorter time to metamorphosis or increased mass at metamorphosis between two populations which differ in the length of the post-metamorphic growing season by 2–4 weeks. Animals from the population a shorter growing season took longer to reach and metamorphosed at a greater mass, while animals from the population with a longer period for post metamorphic growth reached metamorphosis faster, but at a smaller mass. Greater phenotypic variance was observed in both traits in the population with the shorter growing season. These data suggest that animals from the population with a restricted growth period maximise mass at metamorphosis at the expense of longer larval periods while animals from population with the longer post-metamorphic growth period sacrifice mass at metamorphosis to shorten the larval period and maximise larval survival. Differences in phenotypic variance among populations suggest either directional or diversifying selection has acted on both traits.  相似文献   

7.
The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance.  相似文献   

8.
Examples of a new class of phytase related to protein tyrosine phosphatases (PTP) were recently isolated from several anaerobic bacteria from the rumen of cattle. In this study, the diversity of PTP-like phytase gene sequences in the rumen was surveyed by using the polymerase chain reaction (PCR). Two sets of degenerate primers were used to amplify sequences from rumen fluid total community DNA and genomic DNA from nine bacterial isolates. Four novel PTP-like phytase sequences were retrieved from rumen fluid, whereas all nine of the anaerobic bacterial isolates investigated in this work contained PTP-like phytase sequences. One isolate, Selenomonas lacticifex, contained two distinct PTP-like phytase sequences, suggesting that multiple phytate hydrolyzing enzymes are present in this bacterium. The degenerate primer and PCR conditions described here, as well as novel sequences obtained in this study, will provide a valuable resource for future studies on this new class of phytase. The observed diversity of microbial phytases in the rumen may account for the ability of ruminants to derive a significant proportion of their phosphorus requirements from phytate.  相似文献   

9.
Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring   总被引:32,自引:1,他引:31       下载免费PDF全文
A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609–1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among >300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (≥98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing δ-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.  相似文献   

10.
Existing methods for analyzing nucleotide diversity require investigators to identify relevant hierarchical levels before beginning the analysis. We describe a method that partitions diversity into hierarchical components while allowing any structure present in the data to emerge naturally. We present an unbiased version of NEI's nucleotide diversity statistics and show that our modification has the same properties as WRIGHT's F(ST). We compare its statistical properties with several other F(ST) estimators, and we describe how to use these statistics to produce a rooted tree of relationships among the sampled populations in which the mean time to coalescence of haplotypes drawn from populations belonging to the same node is smaller than the mean time to coalescence of haplotypes drawn from populations belonging to different nodes. We illustrate the method by applying it to data from a recent survey of restriction site variation in the chloroplast genome of Coreopsis grandiflora.  相似文献   

11.
The ruminal microbiome in herbivores plays a dominant role in the digestion of lignocellulose and has potential to improve animal productivity. Kankrej cattle, a popular native breed of the Indian subcontinent, were used to investigate the effect of different dietary treatments on the bacterial diversity in ruminal fractions using different primer pairs. Two groups of four cows were assigned to two primary diets of either dry or green forages. Each group was fed one of three dietary treatments for six weeks each. Dietary treatments were; K1 (50% dry/green roughage: 50% concentrate), K2 (75% dry/green roughage: 25% concentrate) and K3 (100% dry/green roughage). Rumen samples were collected using stomach tube at the end of each dietary period and separated into solid and liquid fractions. The DNA was extracted and amplified for V1–V3, V4–V5 and V6–V8 hypervariable regions using P1, P2 and P3 primer pairs, sequenced on a 454 Roche platform and analyzed using QIIME. Community compositions and the abundance of most bacterial lineages were driven by interactions between primer pair, dietary treatment and fraction. The most abundant bacterial phyla identified were Bacteroidetes and Firmicutes however, the abundance of these phyla varied between different primer pairs; in each primer pair the abundance was dependent on the dietary treatment and fraction. The abundance of Bacteroidetes in cattle receiving K1 treatment indicate their diverse functional capabilities in the digestion of both carbohydrate and protein while the predominance of Firmicutes in the K2 and K3 treatments signifies their metabolic role in fibre digestion. It is apparent that both liquid and solid fractions had distinct bacterial community patterns (P<0.001) congruent to changes in the dietary treatments. It can be concluded that the P1 primer pair flanking the V1–V3 hyper-variable region provided greater species richness and diversity of bacterial populations in the rumen of Kankrej cattle.  相似文献   

12.
The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes. Despite this variation in complexity, all the proteasomes are composed of homologous subunits. We searched 238 complete bacterial genomes for structures related to the proteasome and found evidence of two novel groups of bacterial proteasomes. The first, which we name Anbu, is sparsely distributed among cyanobacteria and proteobacteria. We hypothesize that Anbu must be very ancient because of its distribution within the cyanobacteria, and that it has been lost in many more recent species. We also present evidence for a fourth type of bacterial proteasome found in a few beta-proteobacteria, which we call beta-proteobacteria proteasome homologue (BPH). Sequence and structural analyses show that Anbu and BPH are both distinct from known bacterial proteasomes but have homologous structures. Anbu is encoded by one gene, so we postulate a duplication of Anbu created the 20S proteasome. Anbu's function appears to be related to transglutaminase activity, not the general stress response associated with HslV. We have found different combinations of Anbu, BPH, and HslV within these bacterial genomes, which raises questions about specialized protein degradation systems.  相似文献   

13.
Rumen bacterial communities in forage-fed and grazing cattle continually adapt to a wide range of changing dietary composition, nutrient density, and environmental conditions. We hypothesized that very distinct community assemblages would develop between the fiber and liquid fractions of rumen contents in animals transitioned from bermudagrass hay diet to a grazed wheat diet. To address this hypothesis, we designed an experiment utilizing a 16S-based bTEFAP pyrosequencing technique to characterize and elucidate changes in bacterial diversity among the fiber and liquid rumen fractions and whole rumen contents of 14 (Angus × Hereford) ruminally cannulated steers sequentially fed bermudagrass hay (Cynodon dactylon; 34 days) and grazing wheat forage (28 days). Bermudagrass hay was a conserved C4 perennial grass lower in protein and higher in fiber (11% and 67%, respectively) content than grazed winter wheat (Triticum aestivum), a C3 annual grass with higher protein (20%) and a large (66%) soluble fraction. Significant differences in the OTU estimates (Chao1, Ace, and Rarefaction) were detected between fractions of both diets, with bermudagrass hay supporting greater diversity than wheat forage. Sequences were compared with a 16S database using BLASTn and assigned sequences to respective genera and genera-like units based on the similarity value to known sequences in the database. Predominant genera were Prevotella (up to 33%) and Rikenella-like (up to 28%) genera on the bermudagrass diet and Prevotella (up to 56%) genus on the wheat diet irrespective of the fractions. Principle component analyses accounted for over 95% of variation in 16S estimated bacterial community composition in all three fractions and clearly differentiated communities associated with each diet. Overall, bermudagrass hay diets clustered more clearly than wheat diets. These data are the first to explore bacterial diversity dynamics in a common population of animals in response to contrasting grass forage diets.  相似文献   

14.
It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis).  相似文献   

15.
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.  相似文献   

16.
The nitrate-regulated promoter of narG in Escherichia coli was fused to promoterless ice nucleation (inaZ) and green fluorescent protein (GFP) reporter genes to yield the nitrate-responsive gene fusions in plasmids pNice and pNgfp, respectively. While the promoter of narG is normally nitrate responsive only under anaerobic conditions, the L28H-fnr gene was provided in trans to enable nitrate-dependent expression of these reporter gene fusions even under aerobic conditions in both E. coli DH5α and Enterobacter cloacae EcCT501R. E. cloacae and E. coli cells containing the fusion plasmid pNice exhibited more than 100-fold-higher ice nucleation activity in cultures amended with 10 mM sodium nitrate than in nitrate-free media. The GFP fluorescence of E. cloacae cells harboring pNgfp was uniform at a given concentration of nitrate and increased about 1,000-fold when nitrate increased from 0 to 1 mM. Measurable induction of ice nucleation in E. cloacae EcCT501R harboring pNice occurred at nitrate concentrations of as low as 0.1 μM, while GFP fluorescence was detected in cells harboring pNgfp at about 10 μM. In the rhizosphere of wild oat (Avena fatua), the whole-cell bioreporter E.cloacae(pNgfp) or E. cloacae(pNice) expressed significantly higher GFP fluorescence or ice nucleation activity when the plants were grown in natural soils amended with nitrate than in unamended natural soils. Significantly lower nitrate abundance was detected by the E. cloacae(pNgfp) reporter in the A. fatua rhizosphere compared to in bulk soil, indicating plant competition for nitrate. Ice- and GFP-based bacterial sensors thus are useful for estimating nitrate availability in relevant microbial niches in natural environments.  相似文献   

17.
18.
Population bottlenecks and founder events reduce genetic diversity through stochastic processes associated with the sampling of alleles at the time of the bottleneck, and the recombination of alleles that are identical by descent. At the same time bottlenecks and founder events can structure populations through the stochastic distortion of allele frequencies. Here we undertake an empirical assessment of the impact of two independent bottlenecks of known size from a known source, and consider inference about evolutionary process in the context of simulations and theoretical expectations. We find a similar level of reduced variation in the parallel bottleneck events, with the greater impact on the population that began with the smaller number of females. The level of diversity remaining was consistent with model predictions, but only if re-growth of the population was essentially exponential and polygeny was minimal at the early stages. There was a high level of differentiation seen compared to the source population and between the two bottlenecked populations, reflecting the stochastic distortion of allele frequencies. We provide empirical support for the theoretical expectations that considerable diversity can remain following a severe bottleneck event, given rapid demographic recovery, and that populations founded from the same source can become quickly differentiated. These processes may be important during the evolution of population genetic structure for species affected by rapid changes in available habitat.  相似文献   

19.
从山羊瘤胃液中提取混合微生物DNA,经BamHI部分酶切得到50kb~800kb的DNA片段后,将其连接到pCCIBAC载体上,转化E.coliEPI300,建立山羊瘤胃微生物BAC文库。经RFLP鉴定分析,该文库12672个克隆,平均插入片段为6lkb。该文库的构建为后续新型基因的筛选提供了材料,为进一步研究山羊瘤胃微生物奠定了基础。  相似文献   

20.
Formation of Bacterial Microcolonies on Feed Particles in the Rumen   总被引:2,自引:0,他引:2       下载免费PDF全文
Examination of particulate feed that had been digested in vivo in the rumen, and of the leaves of specific legumes that had been digested in vitro by a mixed population of rumen bacteria, showed that very extensive glycocalyx-enclosed bacterial microcolonies developed on many of the available surfaces. Some of these adherent bacteria colonized a surface almost exclusively and attracted another specific type of bacteria as the second members of a distinct morphological consortium. The true extent of the exopolysaccharide glycocalyces of these adherent rumen bacteria was seen in cases where the fibers were attached at multiple points, and their role in microcolony formation and adhesion could be unequivocally ascribed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号